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I. STATEMENT OF PROBLEM 

Material handling pallets are the most common tool used in warehous

ing industries. Nearly every warehouse uses them to some extent. Pallets 

have become an almost universal warehouse operations tool. They provide 

a convenient, simple way to transport, stack, and store materials. 

Traditional palletizing methods load only boxes of the same size on 

one pallet. For retail business such as grocery distribution or manu

facturers that produce many products of small quantities, a wide product 

mix of different box sizes must be loaded onto the same pallet. The tra

ditional palletizing method may not optimize the utilization of the pallet 

cube. 

Manual palletizing is an extremely tedious and fatiguing task. 

Automatic palletization is, therefore, a potentially attractive alterna

tive. Commercially available palletizers handle only one box size at a 

time. They cannot meet the requirements of palletizing applications with 

mixed box sizes. Industrial robots have always been a viable solution to 

complex loading operations due to their flexibility and programming capa

bility. 

Conveyors are the most common device used to transfer boxes to the 

robotic palletizing station from warehouses or production lines. Since 

boxes of various sizes can randomly arrive via the conveyor, elaborate 

consideration must be given for the overall design of the robotic palletiz

ing system. This enables the system to accommodate variations in the dis

tributions of box sizes. Off-line storage areas may be required to absorb 
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boxes that cannot be immediately placed onto a pallet. These stored 

boxes can be picked up later when they can be successfully placed on the 

pallet. 

This research is an extension of previous work by Tsai et al. [95, 

96,97]. Their early efforts were concentrated on the development of two-

dimensional pallet packing algorithm. Tsai's algorithm was static and 

did not respond to variations in the distributions of box sizes. In this 

research, three dimensional pallet loading with mixed box sizes has been 

Investigated. This loading method allows many boxes of various sizes to 

be placed on the same pallet so as to maximize the pallet volume occupied 

by the boxes. The developed loading method is dynamically responsive to 

changes in the size distribution of the boxes in the loading queue. The 

completion of this research has involved the following tasks: 

• Development of algorithms that specify an optimal three-

dimensional pallet pattern for various mixes of box 

sizes when such boxes are loaded onto a pallet of fixed 

dimensions. The two-dimensional algorithm presented by 

Tsai is not directly extendable to three-dimensional 

pallet packing model. The developed three-dimensional 

algorithms are, therefore, new approaches. 

• Development of a physical simulator of an integrated 

robotic palletizing system for both warehousing and 

manufacturing industries. The system design has 

focused on the problem of variations in box size 

distributions. 

• Development of a robot control program for automatic 

palletization, and completion of a physical simulation 

of a robotic palletizing station. A Rhino XR-2 robot 

has been employed for this simulation. Data have been 

collected and analyzed during the simulation to evaluate 

the feasibility and performance of the robotic palletiz

ing system. 
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A variety of literature has been written which addresses both ro

botic palletizing applications and mathematical algorithms of pallet 

packing problems. This literature is reviewed in the following chapter. 
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II. REVIEW OF RELEVANT LITERATURE 

A. Introduction 

A review of history reveals that robots are not new and that the 

application of robots to solve industrial problems dates back to the 

early 1960s. The use of robots in this capacity increased in the United 

States during the 1970s. Economic justification has delayed the wide

spread use of robots for a number of years. In 1960, the cost of oper

ating a robot was over nine dollars per hour, while the overall cost 

of a human operator was less than five dollars per hour. When these 

figures are compared to equivalent data from 1982, the average labor 

cost has reached 15 dollars per hour. The robot operating cost has de

creased to as low as 5 dollars an hour. The cost trends for both robots 

and labor are illustrated in Figure 2.1 [76]. 

Materials handling represents a large and growing part of the costs 

incurred by industry. All palletizing applications in materials handling 

are repetitive, multi-shift, highly labor intensive and tedious. These 

features provide a high possibility of economically justifying the use of 

robots for materials handling. As Industry moves forward with automation 

and the utilization of industrial robots, robot palletizing applications 

will be increasingly attractive. 

When compared with manual loading, robot palletizing has the follow

ing advantages [88]. 

•Increased productivity. Compared with the manual operations, 

the productivity can be increased by more than a factor of two. 
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Figure 2.1. Robot and human labor cost (From 

reference [76]) 

• Stability and improvement in product quality. Smooth robotic 

movements and high positioning accuracy can reduce product 

damage during palletizing. 

• Prevention of labor accidents and improvement of safety. 

Workers can be released from the task of positioning heavy 

boxes by hand as well as from an undesirable working environ

ment. 

• Savings in labor. A labor savings of one worker/shift can 

be achieved. 

• Improved labor turnover. Because of the monotonous, heavy 

labor, the labor turnover can be reduced. 



www.manaraa.com

6 

• Improvement in production management. Cycle time variation 

is reduced. The production schedule can be worked out based 

on the cycle time of the machine, making the production man

agement easier. 

B. Robotic Palletization 

Robot palletizing offers advantages in automating materials 

handling operations using existing technology. Robotic palletization 

has been studied by many researchers in recent years. Their palletiz

ing systems are designed only for the packing of identical boxes. 

A survey of robot applications for palletizing is presented in the para

graphs that follow. 

1. Representative palletizing systems for industrial boxes 

Abair [1] has investigated the possibility of using industrial ro

bots to solve traditional palletizing problems. System layout, tooling, 

robot control software, interfacing, safety and possible manual opera

tion are considered. He states that production rate requirement is the 

most critical factor in palletizing applications. A typical robot cycle 

is approximately 10-15 seconds from piece-part pickup to pickup. He 

suggests that robots may provide a cost effective solution if short-run 

products of different sizes with different palletizing patterns are 

produced. In terms of robot mechanical considerations, cylindrical and 

Cartesian coordinate styles are utilized more often than spherical and 

articulated arm styles according to the author. 

Maximizing overall operations and ensuring system continuity are 

the main concerns of the design of the total system layout. Abair con
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siders the total floor space requirements with regard to robot work 

envelope, support item storage, input area, output area, maintainability 

and possible manual operation in case of machine breakdown. A possible 

palletizing layout is shown in Figure 2.2. 

A robot palletizing center (RFC) has been developed by Grab [45]. 

The "factory of the future" is introduced as a complete system solution 

by an integrated production-logistics system called "INPROLOG" (see 

Figure 2.3). This system consists of a robot palletizing center (RFC), 

automatic guided vehicle systems (AGVS), an automatic forklift system 

(AFS) and collecting robots (COROB). 

The author also considers the selection between a flexible robot 

palletizing center and single purpose unit. An application example in a 

dairy factory has been cited. The system layout is shown in Figure 2.4. 

The robot receives empty containers on "A", and feeds them to an input 

conveyor "C". They are next transferred to output conveyor "D". Here, 

they are retrieved by the robot and palletized on "B". At station "A", 

a container positioning stop gate is installed for alignment of boxes. 

2. Palletizing cell characteristics 

Modern Materials Handling [75] has reported that because of the low 

speed of robots, they will not displace high-speed palletizers for case 

packing. Six transfers per minute is reported as a required cycle time. 

This is slow when compared with special palletizer machines that can 

handle 20 to 100 or more identical cases per minute. Because of robots' 

flexibility of control and movement, they are beginning to be employed 
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Figure 2.2. Palletizing work station 
(From reference [1]) 

in low-speed, complex loading operations. 

To increase packing speed, use of a vacuum gripper is recommended 

to pick up multiple cases simultaneously. However, the loading is 

limited to case weights of about 50 lbs. A combination mechanical-vacuum 
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Figure 2.3. Integrated production and logistics system 

(From reference [45]) 

gripper is then recommended. A mechanical gripper can grasp and posi

tion a pallet. A vacuum gripper then picks up and transfers cases. 

The installation of palletization station which uses up to eight 

pallets at Texas Color, Inc. is shown in Figure 2.5 [75]. The company 

uses a hydraulic cylindrical coordinate robot. Upon receiving a signal 

from the conveyor, the robot retrieves a bundle from the conveyor pick

up station. After a fork truck removes full loads, the robot positions 
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Figure 2.4. Robot palletizing station 

(From reference [45]) 

an empty pallet. A special gripper, which retracts when not in use, 

allows the robot to grasp the pallets. 

Modern Materials Handling [100] has also suggested that a robotic 

palletizer may be selected if lightweight cases of 40 lbs or less are 

handled, and the resultant packing rate ranges from 5 to 15 cases per 

minute. 
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Figure 2.5. Palletizing station with eight pallets 

(from reference [75]) 

3. Sorting/stamping applications and multiple outputs 

Schiwarov and Yanakiev [84] have examined a mechanical handling 

system designed for automatic separation and quality grading of wall 

tile packages in a standard ceramic factory. A robot is used for the 

stacking of the quality identified packages in stable pallet units. A 

full pallet is then automatically removed outside the palletization zone 

to the warehouse. A robotized mechanical handling system has been de

veloped. The system layout is illustrated in Figure 2.6. The system 

consists of the following components (the number corresponds to the de

vice number shown in Figure 2.6): 
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1. An industrial robot 

2. A conveyor for carrying and automatic quality grading of 

wall tile packages 

3. Mobile transport platforms 

4. A spare gravitational roller conveyor for taking up 

unrecognized packages 

5. A quality identification package system 

6. A device for individual package release 

7. Cycle mobile stops for stopping or releasing the packages 

A Transman 2000 robot has also been used for palletizing [21]. The 

system layout is shown in Figure 2.7. The robot can travel along the 

base track so that two or more pallets can be packed at the same time. 

w 

Figure 2.6. A robotized handling system 

(from reference [84]) 
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Figure 2.7. Transman 2000 robot for palletizing 

(from reference (71]) 

Material Handling Engineering [80] has discussed the possibility 

of using the robot as a palletizer. Palletizing robots can be integrated 

into the material handling systems, which can take directions and change 

the control program using information from photo-electric controls or 

scanners. Robots also handle multiple outputs from a material handling 

system. They can travel across the face of a number of terminating pro

duction lines to handle each product. Cycle time, production rate, case 

weights and physical layout are considered when automating this loading 

process. 

Modern Materials Handling [78] has cited a robotic palletizing 

application for a stamping press factory. A conveyor, a robot, and a 

press work together to form an automated work cell. When a pallet is 

full, a light above a nearby post flashes to notify a fork truck operator. 
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It is then shuttled to an unload position, and an empty pallet auto

matically advances into place. Counting of workpieces is also ac

complished by the robot's control program. 

4. Palletizing cells with sensory features 

Cotter and Batchelor [26] have concentrated on the visual monitor

ing of palletizing and packing. The sensing medium is used to identify 

the carton type. It also checks for correct location and orientation, 

ensures good stacking, and identifies full/empty locations on a partly 

filled pallet. Regions of constant height can easily be identified by 

the developed sensing system. These can be analyzed further for posi

tion/orientation Information, e.g., the directions of moments of least 

insertia. This helps ensure the construction of stable unit loads. 

Goto and Takeyasu [44] have studied a robot equipped with a com

puterized tactile member that can feel the forms of various objects 

and their positions, and load them compactly into a pallet. The robot 

was employed to feel for objects, and recognize the form and the posi

tion of an object. This information is used to select the best methods 

of positioning the object on a pallet. 

All robotic palletizing systems reviewed in this section consider 

only one box size at a time. Each palletizing procedure is relatively 

simple and straightforward when compared with that of mixed box sizes. 

Off-line box storage requirements and box distributions coming off a 

conveyor are never the problems for the palletization of identical box 

sizes. However, elaborate design is required for the palletization of 
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mixed box sizes to overcome these problems. Off-line box storage and 

box distributions will be addressed in a later chapter. 

C. Pallet Loading Problems 

1. Introduction 

The problem of nesting varied shapes into fixed rectangular dimen

sions has long been a challenge for researchers. The problem has been 

called tessellation, plane tiling or plane paving. It was first brought 

into mathematical prominence by Hilbert and Vortrag [54] in 1900. 

The pallet loading problem is generally addressed by attempting 

to maximize the number of small rectangles that can be placed ortho

gonally within a large containing rectangle. This problem was also 

discussed in relation to an expanse of operations research literature on 

the two-dimensional cutting stock and bin packing problems. Cutting 

stock has been the problem of determining and cutting a set of stock 

sheets to satisfy a given order. In bin packing problems, the objective 

is normally to pack a given set of rectangular pieces according to some 

simple placement rules. The pieces are loaded into a bin of fixed width 

and infinite height, so as to minimize the height required. 

The pallet loading problem falls into a class of problem termed NP-

Hard [37]. No polynomial algorithms exist for this class, and conse

quently, it is intractable. A problem is defined to be intractable if 

all algorithms to solve that problem are of at least exponential time 

complexity. Therefore, a truly efficient optimal algorithm is not like
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ly to be forthcoming. The combinatorial nature of the problems has 

often led to the use of heuristic methods. The heuristics applied are 

closely linked to the characteristics of the particular problem being 

addressed. 

Of importance is the work of Gilmore and Gomory [39,40,41] in 

their development of knapsack functions for the cutting stock problem 

in the early 1960s. Their algorithm is based on linear programming and 

dynamic programming techniques. This approach has inspired a number of 

authors for the past two decades. 

2. Overview of literature 

A review of the literature in the area of loading and cutting prob

lems has been reported by many authors. Tsai [95] has classified this 

type of problem into plane tiling, pallet stacking, stock cutting, bin 

packing and container packing. His survey was based on articles pub

lished from 1960 to 1982. These articles are briefly summarized in the 

paragraphs that follow. 

The plane tiling problems seeks to pave a finite number of square or 

rectangular hexagons, without gaps or overlaps, to comprise a large 

plane figure of specified dimensions. This problem has been studied by 

Basin [8], Chung et al. [22], Kershner [62], Graham [46], and Hoffman 

[59]. 

For pallet stacking, researchers have concentrated on the investi

gation of fitting a number of identical boxes into a pallet that will 

maximize the usage of pallet space. Papers reviewed in this area in-
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elude Steudel [90,91], Tanchoco and Agee [93], Salzer [82], Kullck [64], 

Gupta [47], and Smith and de Cani [87]. 

Literature relating to one- and two-dimensional stock cutting prob

lems in Tsai's survey include Gilmore and Gomory [39,40,41], Haessler 

[49], Herz [53], Hahn [50], Albano and Orsini [4], Adamowicz and Albano 

[2,3], Albano and Sapuppo [5], Cheng and Pila [19], Page [74], Haims 

and Freeman [51], and Christofides and Whitlock [20]. Integer program

ming, dynamic programming and tree search algorithms are the most fre

quent methods used to approach the stock cutting problems. 

Bin packing problems have been the subject of a number of papers 

including those of Chung et al. [21], Baker et al. [6], and Brown [16]. 

George and Robinson [38] are the only authors who directly address 

the three-dimensional problem in Tsai's survey. The authors studied the 

problem of finding a way to pack a shipment of boxes of various rec

tangular shapes into a shipping container. 

A more detailed summary of these investigations has been previously 

presented by Tsai [95]. Interested readers are urged to refer either to 

this source or to references [2,3,4,16,20,38,39,40,41,47,53, and 91]. 

An outstanding survey has also been presented by Dowsland [30]. 

This article reviews work published up to 1984 which is of direct rele

vance to the solution of two- and three-dimensional packing problems. 

This particular problem has also been the subject to a number of survey 

papers including those of Brown [15], Golden [43], Hinxman [56] and 

Israni and Sanders [60]. 
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Garey and Johnson [36] have concentrated on the survey of 1-dimen-

sional and 2-dimensional bin packing problems. Instead of using so

phisticated mathematical programming techniques, bin-packing algorithms 

usually consist of a specified ordering of pieces, and very simple 

placement rules. Worst case analysis is usually carried out for evalu

ating the performance of the rules. In this excellent survey, 13 one-

dimensional and more than 10 two-dimensional bin-packing rules are 

reviewed. 

The survey in the following sections is based on the articles pub

lished from 1980 to 1985 which contribute directly to the problems of 

two-dimensional stock cutting, pallet loading and bin packing. Important 

theorems and procedures that would apply directly or indirectly to imple

ment the developed algorithm of this research will be described in de

tail. 

3. Linear and goal programming approaches 

Tsai [95] and Tsai, Malstrom, and Meeks [96,9 7] have formulated a 

linear programming (LP) model to solve the pallet loading problem. The 

box sizes are restricted to the same heights in their study. Since the 

box heights are identical, the solution is two-dimensional. Nevertheless, 

the number of box sizes, box lengths and box widths can be selected arbi

trarily. 

For an ordered pair (l^,w^) or L x W, define the first element to 

be the length, which is referred to as a rectangle's horizontal edge. 

Likewise, the second element represents the width, which is the rec
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tangle's vertical edge. (l^,Wj^) denotes .the dimensions of a small 

piece i. and (w^,l^) are considered to be two different box 

types. L X W denotes the dimensions of a pallet. 

The first step of Tsai's procedure is to horizontally divide the 

pallet to W strips, each having the length L and width 1. These further 

reduce the two-dimensional loading problem to the one-dimensional one. 

If a combination of small pieces can fully cover the area of a pallet, 

each strip must be a multiset that contains the lengths of the small 

pieces that the strip intersects, and have a total sum of L. By enumer

ating all possible combinations of strips, the relationships between the 

pieces' lengths and the pallet's length are defined. 

For example, consider three types of small pieces with sizes (2,2), 

(3,4) and (4,3), and a pallet of sizes 8x7. The only possible strips 

that have the sum of 8 are: 

{4,4}, 

{2,2,4}, 

{2,3,3}, 

{ 2 , 2 , 2 , 2 } .  

The second step is then to set up the constraints of widths by con

sidering the strip types and pieces' widths. The LP constraints are 

formulated as follows: 

Let y^ = decision variable, the number of type j strips, 

j = 1,2,...,m 

x^ = decision variable, the number of type i pieces. 
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= number of length 1 in strip j 

r = total number of box types to be considered. 

The first constraint is to limit the total number of strips to the 

width of the pallet. This gives 

m 

Z y, = W (2.1) 
j=l J 

Then, for each different piece's length, the number of times that this 

length is used in all ra strips must equal to the sum of all of the widths 

of the r boxes that have this specific length. Thus, for a given length 

k, 

m r 

^ 'kj'j ° (2-2) 

j=l 

where 5^^ = 1, if 1^ = length k 

= 0, otherwise 

There is no guarantee that a combination of small pieces always 

exists that can completely fill the pallet. Therefore, a dummy square 

piece with the length of one is introduced to ensure that there is at 

least one combination of pieces that can fully cover the pallet's area. 

The number of dummy unit pieces represents the wasted area of the pallet. 

The upper bound of the number of the dummy pieces is required so that 

the number of possible strip types can be minimized. Recall that each 

strip type represents a decision variable in the LP model. 
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A simple pallet pattern is to place identical pieces on the same 

pallet. The upper bound of dummy square pieces is determined based on 

the principle that if the optimal solution obtainel by using the formu

lated LP model is no better than that of the simple pallet pattern, 

then the simple pallet pattern should be employed for optimal packing. 

The algorithms of Brualdi and Foregger [17], and Barnes [7], which will 

be described in detail in a later section, are excellent tools to de

termine the upper bound of the number of dummy unit pieces. 

A complete LP model for the two-dimensional pallet packing problem 

thus has the form: 

r 
maximize Z = Z c.x (2.3) 

i=l ^ 1 

subject to 

m 
2 y, = W (2.4) 

j=l ^ 

m r+1 

Z a..y, = E g..w X. , for all different lengths k 
j.l kj j (2,5) 

where c. = 1.'w. 
i i i 

= the number of dummy square pieces. 

This formulated LP model can be easily solved using existing mathe

matical software systems. It is efficient when compared with the exist

ing algorithms reviewed in Tsai's survey. However, the optimal pallet 
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pattern is generated implicitly from the LP model. Only the number of 

pieces for each type, orientations of pieces, and the number of strips 

for each type are given from the final solution instead of the location 

of each piece on a pallet. Human intervention may be required to deter

mine the solution's corresponding pallet pattern. Tsai et al. [95,96,97] 

constructed a physical simulator to evaluate different loading methods 

using the developed LP model. 

Fleming [33] and Fleming, Malstrom and Meeks [34] have extended the 

early work of Tsai. Their developed model is still two-dimensional but 

is responsive to changing distributions of box sizes that arrive at the 

robot to be palletized. 

Two goals must be achieved in the model. First, each pallet has to 

accommodate a proportional number of boxes of each size so that no size 

of box is left unpalletized. Second, the pallet has to be as full as 

possible. Linear goal programming technique is employed to approach the 

formulated multi-objective model. 

4. Dynamic programming approaches 

Beasley [9] has studied the two-dimensional, guillotine cutting 

problem of cutting a single large rectangular plane to a number of small 

rectangular pieces. His objective is to maximize the value of the pieces 

cut. A guillotine cut on a rectangle is a cut from one edge of the rec

tangle to the opposite edge which is parallel to the two remaining edges. 

Figures 2.8a and 2.8b show the guillotine and nonguillotine cutting 

patterns. 
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(a) guillotine pattern (b) nonguillotine pattern 

Figure 2.8. Two cutting patterns 

There are no constraints upon the number of pieces of each type that 

are cut from the large plane. The author points out the error of the 

recursion procedure given in Gilmore and Gomory [41], and presents a 

method of dynamic programming recursion for staged cutting which develops 

different functions for different first-stage cut directions. A heuristic 

algorithm is also presented when the optimal recursive procedure becomes 

computationally infeasible. 

The dynamic programming recursion for staged cutting is enhanced 

computationally through the use of normal patterns. Figure 2.9 shows a 

nonnormalized cutting pattern and a normalized cutting pattern. Christo-

fides and Whitlock [20] have proved that given a cutting pattern, any 

piece/cut in that pattern can be "left-shifted" until both the left-

hand edge and the bottom edge of pieces are adjacent to a cut. The 
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normalization preserves any stage property in the original cutting pat

tern. 

P I E C E  P I E C E  

X 
< P I E C E  

P I E C E  

X - A X I S  

P I E C E  

u> 
X 
< 

P I E C E  

P I E C E  

X - A X I S  

(a) nonnormalized (b) normalized 

Figure 2.9. Nonnormalized and normalized pattern 
(from reference [9]) 

Steudel [92] has extended the 1979 recursive algorithm of Steudel 

[91] to a new heuristic and provided more efficient loading patterns. 

The algorithm is limited on two-dimensional nonguillotine cutting fashion, 

and only identical size rectangular items are considered. 

The heuristic model consists of three phases. Phase one utilizes a 

dynamic programming recursion to determine four optimum sets of length 

and/or width placements of the item along the inside edges of the pallet. 

Phase two utilizes heuristic rules to project the optimum perimeter ar

rangement inward to fill the center of the pallet. Phase three first at

tempts to explode the phase two pallet pattern to the perimeter edges of 
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the pallet. It next inserts end and/or side-stacked items to maximize 

the number of items per layer. It can be shown that side stacking of 

boxes, when applicable, can yield average increase in the range of 5% 

in number of items per pallet load. 

Hodgson [57,58] has addressed the problem of two-dimensional pallet 

loading with a set of various sizes of rectangular boxes. The problem 

is approached using a combination of dynamic programming and heuristics. 

In this dynamic programming model, a partition divides the pallet into 

two parts of echelon-shape. The partition values in each stage are then 

calculated. Since the number of possible partitions of the pallet is ex

tremely large, partitions are limited to rectangles to reduce computer 

storage and computation time. Figures 2.10a and 2.10b show the echelon-

shaped and rectangular partitions. 

The structured solutions resulting from the dynamic programming model 

allow any item to be placed on the periphery of the pallet for easy access. 

Also, some control may be retained over the pallet's center of gravity. 

5. Heuristic approaches 

To reduce computation effort, heuristics have been introduced to 

solve the pallet loading problem. In all cases, the number of potential 

configurations is reduced by considering only layouts of a particular 

form. 

Beasley [10] has investigated the two-dimensional, guillotine cutting 

assortment problem where constraints are Imposed upon the number of small 

pieces of each type. A heuristic algorithm is developed based on a pro-
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(a) echelon-partition (b) rectangle-partition 

Figure 2.10. Pallets with partitions 

(from reference [57]) 

cedure for generating two-dimensional cutting patterns. A linear pro

gram for choosing the cutting patterns is used. Also, an interchange 

procedure determines the best subset of stock rectangles to cut. 

Farley [31,32] has studied the two-dimensional, guillotine cutting, 

trim-loss problem arising in the glass-industry. A restriction that im

poses a limitation upon the positioning of cut within the stock-plate 

is added to the conventional guillotine cutting problem. Two procedures 

are presented which take an existing pattern and attempt to rearrange 

it to meet the restrictions. First, the heuristic procedure attempts to 

transpose one of the cuts from a pair of cuts not currently complying 

with the restrictions. Secondly, the enumeration procedure generates 

all possible patterns corresponding to the required combination. The 
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patterns must conform to the data structure chosen that represents a 

cutting pattern. 

Roberts [77] has addressed the cutting-stock problem which arises 

in the manufacture of furniture. The worktops to be cut are of one of 

two basic shapes, either rectangular or L-shaped. Due to the relative 

dimensions of a typical worktop and the raw material used, the approach 

to a solution has been to reduce the problem to a series of one-

dimensional trim-loss exercises. A heuristic was developed to schedule 

the cutting of worktops of varying shapes and sizes from available raw 

material. The method of solution was to order the raw material in order 

of increasing size. Each stage of the solution process involves an 

attempt to remove the largest remaining worksop from what remains of the 

current piece of raw material. Based on numerical experiments, it was 

shown that the overall waste incurred for the complete set of runs in

volving 1491 worktops was 12.6%. 

Israni and Sanders [60] have investigated a two-dimensional cutting 

stocking problem. A recursive algorithm to lay out rectangular bills of 

material on stock sheets is presented. This algorithm is based on the 

First-Fit Decreasing-Height^ (FFDH) algorithm used in bin packing prob

lems." The procedure allows human intervention at strategy points during 

its run. In the process, the human may choose to fill in the resultant 

gap of the stock sheet with any judicious combination of unallocated 

pieces. Intervention continues until the user is satisfied. 

^The FFDH algorithm will be discussed in a later section. 
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6. Integer programming approach 

Beasley [11] has considered the two-dimensional, nonguillotine 

cutting problem of cutting a number of rectangular pieces from a single 

large rectangle so as to maximize the value of the pieces cut. An exact 

algorithm based on a zero-one integer programming was developed. Beasley 

states that no other exact solution procedure for this problem exists in 

the literature. 

The formulation is a large zero-one integer programming involving 

(MxLxW) variables and (M+LxW) constraints. Here M is the total number 

of types of small pieces. L and W are the length and width of the large 

stock sheet. The Lagrangian relaxation is then used as a bound in a 

tree search procedure. Subgradient optimization is also employed to op

timize the bound derived from the Lagrangian relaxation. 

Besides Lagrangian relaxation, Beasley [12] has also proposed linear 

programming relaxation, and knapsack relaxation to set up the upper bound 

for the tree search procedures. By releasing the binary variables, x, 

to the constraint of x > 0, this linear programming relaxation becomes a 

large L.P. model. The relaxed program using knapsack relaxation is the 

problem of filling a knapsack of size L-by-W (the large rectangle) with a 

number of items of size 1-by-w (the small pieces) so as to maximize the 

value of the items in the knapsack. This problem can be solved by dynamic 

programming for the upper bound value. 
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7. Comblnatoric and network flow approaches 

Wang [99] has proposed two comblnatoric methods that generate con

strained two-dimensional, guillotine cutting pattern by successive 

horizontal and vertical builds of ordered rectangles. A horizontal 

build of two rectangles = p^'q^ and A^ = Pg/qg is a rectangle having 

dimensions max(p^,p2)-by-(q^+q2). A vertical build of A^^ and A^ is a 

rectangle of dimensions ' Figures 2.11a and 2.11b 

illustrate a horizontal and vertical build of A^ and A^. 

Instead of enumerating all possible cuts, the comblnatoric algorithm 

finds guillotine cutting patterns by successively adding the rectangles 

to each other. Two parameters having value between 0 and 1 are employed 

to reject undesirable additions. The first algorithm measures the parame

ter with respect to the area of large stock sheet. The second algorithm 

measures the other parameter with respect to the area of guillotine rec

tangle generated in the algorithm. Theorems are also developed for de

termining the error bounds that measure the closeness of the best patterns 

to the optimal solution. 

Biro and Boros [13] have presented a network flow algorithm to 

approach the nonguillotine cutting problem. The cutting problem is 

interpreted in a resource contained scheduling context. In this case, 

W (width of a large stock sheet) denotes the amount of resource available 

at any time. The width of a small piece i, w^, denotes the amount of 

resource required by job i at all times during its execution. The length 

of a small piece i, 1^, denotes the processing time of job i. The ob
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(a) horizontal build (b) vertical build 

Figure 2.11. Builds of rectangles and 

(from reference [99]) 

jective is to minimize the maximum completion time without preemption, 

i.e., minimize the total length used of the large stock sheet. Theorems 

are developed that contain the algorithms which are able to construct 

a cutting pattern from a flow with the required properties. The charac

terization makes it possible to search for good cutting patterns with the 

help of network flow and graph theory techniques. Here, an arc with 

positive flow represents the direct superposition of two rectangles. 

The capacities of the arcs are the maximum sizes of the intervals along 

which they can be superposed. 

8» The tiling aspect 

Two important theorems have been developed for two-dimensional 

tiling with identical bricks. One is for harmonic bricks. The other 
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is for the bricks that have relatively prime dimensions. 

Brualdi and Foregger [17] have studied the problem of finding the 

largest number of identical bricks that can be packed in the box with 

the sides of the bricks parallel to the sides of the box. Here, the 

brick sizes are restricted to be harmonic. An a x b brick (where b ̂  

a) is harmonic if b is a multiple of a. Let [t] denote the largest 

integer value no greater than t. The authors have proved the following 

theorem: 

The maximum number of harmonic bricks of fixed size a x b that can be 

packed in a L x W box is 

N(L,W;a,b) = [L/b][W/b](b/a) + [W/b][m/a] + [L/b][n/a] + 

max(0, [m/a] + [n/a] - b/a) (2.6) 

where N(L,W;a,b) = maximum number of bricks, 

m = L - [L/b](b), 

n = W - [W/b](b). 

Barnes [7] has also addressed the problem of packing the maximum 

number of a x b tiles in a large L x W rectangle. Here, a and b are 

relatively prime integers. Let A be the waste in an optimal packing of 

a X 1 tiles on the L x W rectangle, and B the amount of waste in an op

timal packing of b x 1 tiles. The value of A is given by 

A = minfrs, (a-r)(a-s)} (2.7) 
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where r = L(mod a); 

s = W(mod a); 

mod = the modulus division, which gives the remainder when the 

first argument is divided by the second. 

B is obtained by a similar calculation. Define R to be the least non-

negative integer such that 

R ̂  max(A, B), and (2.8) 

R 5 A(mod a); 

R = B(mod b). 

The author has proved that if L and W are sufficiently large, then the 

wasted area in the best possible packing of a L x W rectangle with 

a X b tiles is precisely R. 

Dowsland [28] has pointed out that "sufficiently large" require

ment of Barnes' theorem implies that the ratio of the containing rec

tangle to the contained rectangle is larger than that encountered in 

most pallet loading problems. However, Barnes' estimate can be employed 

as an upper bound on the optimal packing number. The author then modi

fies Barnes' procedure and introduces a partition reduction technique 

to approach the packing problem. 

9. The loading aspect 

The two-dimensional orthogonal packing problem of packing identical 

rectangles into a large containing rectangle has been studied by Dows

land [29]. The following theorem is proved. The set of feasible lay

out orthogonal packings of identical rectangles into a large rectangle 
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is totally defined by the set of efficient partitions. Here, an ef

ficient partition of a pallet edge S, in box dimensions a x b, is an 

ordered pair of nonnegative Integers (n,m) satisfying 

0 ̂  S - (na+mb) < b. (2.9) 

The author then examines the condition under which the set of 

feasible layouts remains unchanged and shows that these conditions can 

be represented by a series of planes in three-dimensional space. A 

graphic representation of the relationship between box and pallet dimen

sions in three-dimensional space yields a method for obtaining accurate 

outlines for standard two-dimensional pallet charts. Thus, a three-

dimensional pallet chart is constructed. Such charts can be used to 

measure the sensitivity of a layout to change in box and pallet dimen

sions. The results of the theorem are also used to provide an estimate 

of the optimal packing number of small rectangles. 

Bischoff and Dowsland [14] have illustrated an application of the 

micro-computer to the problem of pallet loading with identical cases. 

Their algorithm is based on the early developments of Steudel [91] and 

Smith and de Cani [87] who divide the pallet into up to four rectangular 

areas. The investigation of the shortcomings of Steudel's approach and 

the method of Smith and de Cani leads to an improved algorithm for the 

loading rectangular pallets that allows for layouts with up to five 

blocks. The pallet layouts of four and five areas are illustrated in 

Figure 2.12. 
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Figure 2.12. Pallet layouts with blocks 

(from reference [14]) 

Carpenter and Dowsland [18] have given practical consideration to 

the development of loading patterns into pallet stacks. Criteria are 

also presented to determine the suitability of the pallet stacks for 

storage and transportation. Three criteria for stability requirements 

are: 

• Each box must have its base in contact with at least two 

boxes in the layer below. Contacts of less than X% of a box's 

base area will be ignored. 

• Each box must have at least Y% of its base area in contact 

with the layer below. 

• There must be no straight or jagged guillotine cuts travers

ing more than Z% of the stack's maximum length or width. 

10. The bin packing aspect 

Bin packing algorithms usually consist of a specified ordering of 

pieces and a placement policy. The analysis applied to the performance 
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ratio of the actual solution to the optimal solution is examined. 

Coffman et al. [23] have analyzed three level-oriented algorithms 

for packing rectangles into a unit-width, infinite-height bin so as to 

minimize the total height of the packing. The three algorithms they 

discuss are summarized below: 

• Next-Fit Decreasing-Height (NFDH): Let L be an arbitrary 

list of small rectangles. L is ordered by nonincreasing height. 

Also, a level is defined by a horizontal line drawn through 

the top of the maximum height rectangle placed on the previous 

level. The first level is simply the bottom of the bin. With 

the NFDH algorithm, rectangles are packed left-justified on a 

level until there is insufficient space at the right to ac

commodate the next rectangle. 

• First-Fit Decreasing-Height (FFDH); Let L be ordered by 

nonincreasing height. In the packing sequence, the next 

rectangle to be packed is placed left-justified on the first 

level on which it will fit. If none of the current levels will 

accommodate the rectangle, a new level is started as in the 
NFDH algorithm. 

• Split-Fit algorithm (SF); Divide the given list L of rec

tangles into two sublists LI and L2 according to pieces' 

widths. Then, pack the rectangles in LI using the FFDH al

gorithm. Rearrange the block of this packing so that suffi

cient room is created. Finally, pack the rectangles in L2 

into the room established by LI. The remainder will be 

packed above the packing for LI using the FFDH algorithm. 

Figures 2.13a and 2.13b demonstrate the packings of six small rectangular 

pieces using the NFDH and FFDH algorithms. 

The authors prove that for these three algorithms, the ratio of the 

height obtained by the algorithm to the optimal height is asymptotically 

bounded by 2, 1.7 and 1.5, respectively. 

Two orthogonal oriented two-dimensional, packing algorithms are 
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(a) NFDH algorithm (b) FFHD algorithm 

Figure 2.13. Packings of six small rectangles 

(from reference [23]) 

also presented by Golan [42]. One is called Split algorithm (SP-

algorithm). The other is called Mixed-algorithm (M-algorithm). The 

SP-algorithm splits an open-ended rectangle into two open ended rec

tangles and a closed rectangle. The M-algorithm divides the pieces 

into several sets and packs the pieces in the set in different ways. 

The author shows that for the M-algorithm the ratio of the height used 

by the algorithm to the optimal height is asymptotically bounded by 

4/3. 

Baker et al. [6] have developed an algorithm called the Up-Down (UD) 

algorithm for a two-dimensional bin packing problem. The UD algorithm 

is derived by analyzing the behavior of the Next-Fit Decreasing-Height 
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(NFDH) and First-Fit Decreasing-Height (FFDH) algorithms. The author 

proves that the ratio of the height obtained by the new UD algorithm 

to the height used by an optimal packing is asymptotically bounded by 

5/4. This bound is the best value that has been proved so far in the 

bin packing literature. 

All algorithms reviewed in this chapter are limited to two-

dimensional problems. Two new mathematical algorithms for the three-

dimensional pallet packing problem and robotic palletizing systems for 

mixed box sizes are the subjects of the following chapters. 
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III. THREE-DIMENSIONAL PALLET LOADING ALGORITHMS 

A. Introduction 

There are two major facets of the pallet packing problem [57]. The , 

first is called the manufacturer's pallet packing problem. This problem 

is to choose the carton and pallet dimensions so that the volume of 

product packed in a container is maximized. It requires a "one-shot" 

analysis to determine the solution. 

The second is called the distributor's pallet packing problem. 

In this problem, the distributor fills an order from a customer. The 

problem is to pack the cartons on a standard pallet so as to maximize 

the volume placed on each pallet, thereby, minimizing the number of 

pallets used to ship the order. The problem addressed in this research 

is a constrained version of the distributor's pallet packing problem. 

This is because the number of cartons of each size that can be loaded 

on a pallet is restricted. 

Due to difficulty of expanding existing two-dimensional loading 

methods described in Chapter II, two new three-dimensional pallet loading 

procedures have been developed in this research. One is a mixed 0-1 

integer programming model which generates an exact optimal solution. 

This solution procedure may be time-consuming. The other is a heuristic 

dynamic programming algorithm which may give only "good" solution but 

requires less computation time when compared with the mixed 0-1 model. 

The solution of the mixed 0-1 model explicitly gives the desired 

number of boxes of each size and the x, y, z coordinates of each box's 
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placement location on the pallet. An existing branch-and-bound tech

nique is employed to solve the mixed 0-1 integer programming model. An 

example is also presented to illustrate the procedure of model trans

formation. 

Unlike traditional dynamic programming, the heuristic dynamic pro

gramming algorithm involves the achievement of two goals. The first 

goal is to maximize the utilization of a pallet cube. The second goal 

is to make the box proportion satisfy some user-specified number. Post-

solution adjustment may be also required for the heuristic dynamic pro

gramming procedure to obtain desired box proportions. These two algor

ithms are described in the following sections. 

B. The Mixed 0-1 Integer Programming Model 

1. Constraints of placement location on the pallet 

Consider a set B = {b^^jb^, •. • ,b^}. B is a collection of n boxes. 

Each box b^ has length 1^, width w^, and height h^. A loading of B into 

a pallet of length L, width W and stacking height limit H is an assign

ment of boxes to a position within the pallet such that: 

• no two boxes in the pallet overlap ; 

• each box is contained entirely within the pallet, with its 

sides parallel to the sides of the pallet; 

• the proportion of the number of boxes of a given type to 

the total number of boxes of a full pallet load satisfies 

some user's specification. 

An optimal loading is achieved if the use of pallet space is maximized 

under the consideration of the above three restraints. The stabili
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ty^ (interlock between boxes) of a unit load built up on a pallet is 

not taken into consideration in this research. 

Boxes in set B may or may not have the same dimensions. Also, the 

orientations of the boxes in set B are fixed permanently. The length, 

width and height of a box must be aligned with the length, width and 

height of the pallet, respectively. Length is defined as the dimension 

along the x-axis. Width is the dimension along the y-axis, and height 

is the dimension along the z-axis in Cartesian coordinate space. In 

this research, the orientation of box height is assumed to be fixed 

("this side up"). Only the length and the width of a box are inter

c h a n g e a b l e .  T h u s ,  a  b o x  c a n  b e  p l a c e d  e i t h e r  i n l x w x h o r w x l x  

h direction on the pallet. Two boxes representing these two orienta

tions must be individually included in set B. In addition, the place

ment location of a box in Cartesian coordinate space is measured rela

tive to the front-bottom-left corner of the box throughout this chapter. 

The following paragraphs describe the procedure of converting the 

requirements of avoiding box overlaps to mathematical constraints. Con

sider two partially overlapped boxes, A and B, as shown in Figure 3.1. 

The projections of these two boxes on the x-y, the x-z and the y-z planes 

are illustrated in Figures 3.2a, 3.2b and 3.2c, respectively. 

In industrial applications, the strapping and wrapping machines 

can be employed to secure a pallet load. See reference [66] for more 

information of various approaches for load security. 
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( 0 , 0 , 0 )  

Figure 3.1. Two overlapped boxes 

Suppose the location of box A is fixed, and that box B is free 

to move arbitrarily in Cartesian coordinate space. To avoid overlap 

of these two boxes, the following conditions must be satisfied. 

Denote 1^, Ig = lengths of boxes A and B, respectively; 

w^, Wg = widths of boxes A and B; 

^B 
heights of boxes A and B; 

(^A'^A'^A? ~ front-bottom-left corner coordinate of box A; 

(x„,y_,z_) = front-bottom-left corner coordinate of box B. 
D D O 

When considering the x-y plane (see Figure 3.2a): 

+ & 

or 

*B i "A 
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Figure 3.2. The projections of boxes on planes 
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or 

or 

 ̂ + "a 

J-B + "B i 'A 

When considering the x-z plane (see Figure 3.2b): 

or 

or 

or 

-B i "a Â 

*B — *A 

^B i "a + "A 

"B + "B - "A 

When considering the y-z plane (see Figure 3.2c); 

PB ̂  ̂A + "A 

or 

ys + *8 ̂  

or 

or 

'B 1 'A + "-A 

:B + ̂ B 1 'A 

By eliminating the redundant inequalities and rearranging the 

variables, equations (3.1) through (3.6) below are obtained: 

'B - *A 

or 

or 

=& - *B - 4 (3-2) 
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(3.3) 

or 

(3.4) 

or 

(3.5) 

or 

(3.6) 

At least one of these six constraints must hold to prevent overlap of 

these two boxes. The safety regions in which box B can be placed are 

shown as the shaded areas in Figures 3.3a, 3.3b and 3.3c. These six 

regions correspond to the six constraints of eqs. (3.1)-(3.6). 

For the set B = {b^.bgi.'.ib^}, all position relationships among 

these n boxes must be considered. The position constraints can be de

termined by establishing the constraints specified by eqs. (3.1)-(3.6). 

Since only two boxes are considered in each constraint set of eqs. (3.1)-

(3.6), there are (g) = n(n-l)/2 combinations to be formulated. 

A two-dimensional pallet packing problem is formulated first since 

the geometry of the problem can give an insight Into the three-dimen

sional algorithm. The formulation of the three-dimensional packing 

problem is then expanded from the two-dimensional case. 

2. Formulation of two-dimensional pallet packing 

Consider a pallet of size L x W, and a collection of n rectangular 

pieces B = {b^,b2,.•.,b^}. Piece b^ in set B has length 1^ and width 

w^. This two-dimensional packing problem can be formulated as a mathe

matical programming model. Denote this as model I. The model may be 
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xWXWWxxxxxWV 

ES 

Figure 3.3. The safety regions for Box B 
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expressed as: 

Model I: 

n 

I 
k=l 

subject to 

Maximize Z = S a, P, (3.7) 
k k 

or 

or 

or 

X.  -  X.  > 1, (3.8) 
i ] - j 

Xj - 1 li (3-9) 

- Yj 2 Wj (3.10) 

Yj ~ 1 (3.11) 

and 

*k 2. A 'k 
> X°P, (3.12) 

fk (3-13) 

x^, < (X°+L)-l^ (3.14) 

1 (Y°+W)-w^ (3.15) 

(3.16) 
n 

J/" - L!i 

•̂''k -

Pj^ e {0,1}, 

i = 1,2,...,n-l 

j = i+1,i+2,...,n 
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k = 1,2,...,n, 

g = 1,2,...,r. 

where: = desired proportion of size g pieces; 

a, = the area of piece k = 1, "w. ; piece k is the kth element 

in set B; 

Xj, = the x-coordinate of the bottom-left corner of piece i; 

= the y-coordinate of the bottom-left corner of piece i; 

r = total number of box sizes. 

(X°,Y°) in model I is the coordinate of the pallet's bottom-left 

corner. (X°,Y°) is selected in the x-y plane so that every piece in set 

B can be placed entirely within the large rectangle of length (X°+L) 

and width (Y°+W). The allocation of the pallet at coordinate (X°,Y°) 

also guarantees that the continuous variables, x^ and y^, will result 

in positive solution. The restriction of the nonnegativity conditions 

on the decision variables are required for linear programming. 

The values of X° and Y° can be determined using the following ex

pressions. 

X° = n*max(l^), 

Y° = n'max(w^). 

Figure 3.4 shows the location of the pallet in the x-y plane. 

Eqs. (3.8)-(3.11) set up the position constraints such that no 

pieces will overlap with one another. These constraints are estab

lished according to eqs. (3.1)-(3.6). Since the packing problem in 
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question is two-dimensional, the height constraints (eqs. (3.5) and 

(3.6)) are not considered in model I. 

Constraints (3.12)-(3.15) confine the placement boundary of a box 

on the pallet. is a binary variable, which can only be either zero 

or one. It is associated with the kth piece in set B. When Pj^ = 1, 

the following must hold for eqs. (3.12)-(3.15). 

'k : 

1 (Y°+w)-Wĵ  

This Indicates that piece k is placed in the valid pallet area (shaded 

area ABCD in Figure 3.4). Thus, = 1 represents the placement of 

piece k entirely within the pallet. Because the objective function is 

to maximize the total area covered on the pallet, this will force P^ 

to take on as many I's as possible. Eqs. (3.12)-(3.15) become the 

following if all P^^s are set, equal to 1. 

X k 2 X °  

y k > ? °  

Xk 1 (X°+L)-lk 

± (Y°+W) -Wj^ ,  k = l,2,...,n. 
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Y +W 

Valid pallet 
area 

X +L ( 0 , 0 )  

Figure 3.4. Pallet position in the x-y 

plane 

The above relationships infer that all pieces in set B are placed 

within the small shaded area ABCD (see Figure 3.4), which represents 

the valid area of the pallet. However, due to the position constraints 

of eqs. (3.8)-(3.11), not all of the can be set equal to 1. That 

is, not all pieces can be placed onto the pallet (shaded area ABCD in 

Figure 3.4). Some P^/s will, therefore, be set equal to 0. This re

laxes the restrictions of eqs. (3.12) and (3.13), and changes eqs. 

(3.12)-(3.15) as follows; 

\> 0 
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Xk 1 (X +L) - 1% 

1 (Y°+w) -

This allows piece k to be placed in the large rectangle OECF (see Figure 

3.4), but outside the valid shaded area ABCD. 

Note that so long as one of the constraints (3.12) and (3.13) is 

not in effect, will be set equal to zero. Therefore, = 0 repre

sents the placement of piece k outside the pallet either entirely or 

partially. 

Eq. (3.16) defines the box proportion constraints. It states that 

the ratio of the number of size g pieces to the total number of pieces 

on the pallet must not exceed the user-specified proportion value R^. 

In eq. (3.16), is a subset of B. It consists of all pieces of size 

g regardless of the orientation, i.e., 

Cg = " (Ig'Wg) (Wg'lg)' 1 1 k 1 n}. 

By solving this formulated model, the objective function maximizes 

the total area covered on the pallet by the pieces. In the final solu

tion, any piece having a P^ value of zero will be discarded. The solu

tion determines not only the required number of pieces of each type, 

but also the placement location of every piece on the pallet. The op

timal pallet pattern is thus explicitly obtained from the final solu

tion. 

Eqs. (3.8)-(3.11) make the problem one of multiple choice program

ming [52]. By introducing additional binary variables, Hillier [55] has 
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transformed the multiple choice programming problem into a standard 

mixed 0-1 Integer programming model. His transformation procedure Is 

as follows: 

Consider the case where, given a set of four possible constraints, 

It is only required that one of these constraints must hold. For eqs. 

(3.8)-(3.11), these restraints are: 

or 

or 

or 

An equivalent formulation of this requirement is 

X. - X. < -1. + Mu 
j i - J 

(3.17) 

(3.18) 

Yj - 1 -Wj + MUg (3.19) 

- Yj < -w^ + Mu (3.20) 

(3.21) 

u^ E {0,1}, 1=1,2,3,4. 

where M is an extremely large number. The constraint on the u. (eq. 
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3.21) guarantees that one of these artificial variables will equal zero 

and those remaining will equal 1. Therefore, one of the original con

straints will be unchanged, and the rest will not be in effect because 

of the extremely large value of the right-hand-side. For instance, 

let u^ = 0, Ug = Ug = u^ = 1. Then, eq. (3.17) must be satisfied, and 

eqs. (3.18), (3.19) and (3.20) are relaxed due to the extremely large 

value of M. 

Based on Hillier's procedure, each set of four multiple choice con

straints requires four binary variables. By considering the following 

binary coding logic, the number of binary variables can be further 

reduced to two without any additional constraint. The four possible 

combinations of two binary variables u^ and u^ are 

0 0 
0 1 
1 0 
1 1 

These four combinations can be used to set up the right-hand-side (RHS) 

values of the four multiple choice constraints. Eqs. (3.17)-(3.21) are 

equivalent to 

Xj - x^ _< -Ij + M(u^+u^) (3.22) 

- Xj < -1^ + M[1 - (ug-u^)] (3.23) 

Yj ~ 1 "Wj + M[1 - (u^-Ug)] (3.24) 
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_< -w^ + M[2 - (u^+u^)] (3.25) 

u^, E {0,1} 

where M is an extremely large number. 

The possible combinations of u^^ and u^ and their corresponding 

constraint equations are presented in Table 3.1. 

Table 3.1. Binary values and associated constraint equations 

Binary vars. RHS values of equations Applicable 

constraint 
equation 

"l "2 
(3.22) (3.23) (3.24) (3.25) 

Applicable 

constraint 
equation 

0 0 
-'j 

M 

M M 2M (3.22) 

0 1 

-'j 

M 
-^i 

2M M (3.23) 

1 0 M 2M 
-"j 

M 

M (3.24) 

1 1 2M M 
-"j 

M -Wi (3.25) 

Since M is extremely large, the resulting right-hand-side value of -1^+M 

or -w^ + M is simply indicated as M in Table 3.1. Table 3.1 shows that 

eqs. (3.22)-(3.25) are equivalent to the multiple choice constraints of 

eqs. (3.8)-(3.11). Therefore, model I can be reformulated as a standard 

mixed 0-1 integer programming model. Let this new formulation be model 

II as expressed below. 

Model II: 

n 

Maximize Z = 2 a, P. 
k=i " 
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subject to 

Xj - *1 1 -Ij + + "tz) 

*1 - Xj < -^1 + - ("t2-"tl)] 

yj - 1 -Wj + M[i - (u^^-u^g)] 

yi - yj 1 -Wj_ + M[2 -

i x°Pk 

fk ̂  ?°pk 

1 a°+i) - \ 

y. < (y" + W) - W. 

n 

Z < R^-( Z P_) 

g 
mec " ® m-1 " 

Xk-'k - ° 

\>V\2 ̂ (0-1) 

i = 1,2,...,n-l 

j = i+l,i+2,...,n 
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t = 

(j-1), for 1=1 

1-1 

(j_i) + 2 (n-s), for 1 > 1 

where and are the artificial binary variables for converting 

the multiple choice constraints of set t to the standard "AND" con

straints, t = 1,2,...,<2)' 

Note that the maximum value of any variable is (X°+L) - Ij^ 

(see Eq. 3.14), and the minimum value of is zero (see eq. 3.12 with 

= 0). The maximum absolute difference between two variables x^ and 

Xj is (X°+L) - 1^ or (X°+L) - 1^. Likewise, the maximum absolute dif

ference between variables y^ and y^ is (Y°+W) - w^ or (y°+W) - w^. 

Therefore, the value of M will be sufficiently large by assigning 

M > 2*max{X°+L,Y°+W}. 

Model II is a complete model for the two-dimensional packing 

problem. By introducing the height constraints of eqs. (3.5) and (3.6) 

to model II, the two-dimensional pallet packing formulation is ex

tendable to a three-dimensional model. The following section describes 

the formulation procedure for the three-dimensional pallet packing 

problem. 

3. Formulation of three-dimensional pallet packing problem 

Let set B = {b^,b2,...,b^} be a collection of n boxes. Each box 

b^ has length 1^, width w^ and height h^. Boxes In set B are to be 

loaded onto a pallet of length L and width W with a stacking height 
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limit H. 

a. Binary variables and multiple choice constraints Based on 

Hillier's formulation procedure [55], a set of the three-dimensional 

position constraints, eqs. (3.1)-(3.6), is equivalent to 

X, - X, < -1. + Mu, (3.26) 
3 i - j 1 

- Xj < -1^ + Mu^ (3.27) 

Yj - 1 -"j + (3.28) 

- Yj < -w^ + Mu^ (3.29) 

z. - z, < -h, + Mu_ (3.30) 
j i — j 5 

z. - z. < -h, + Mu, (3.31) 
i 3 — i 6 

and 

u^ + Ug + Ug + u^ + Ug + Ug = 5 (3.32) 

u^ E {0,1}, i = 1,2,3,4,5,6. 

where u^'s are binary variables, and M is an extremely large number. 

Hillier's procedure requires six additional binary variables for 

each set of six multiple choice constraints. The binary variables can 

be further reduced to three with one additional constraint according 

to the following binary coding procedure. Let u^, u^ and u^ be binary 

variables and 

1 ̂  u^ + Ug + Ug < 2. 
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The six possible combinations of different binary values are 

"1 "2 "3 

1 0 0 
0 1 0 

0 0 1 
1 1 0 

0 1 1 

1 0 1 

The above six combinations can be used to set up the right-hand-side 

values of six multiple choice constraints. The multiple choice con

straints of eqs. (3.1)-(3.6) are equivalent to 

X. - X < -1 + M(u„ + u_) (3.33) 
J i — j I j 

x^ - Xj _< -1^ + M(u^ + u^) (3.34) 

Yj " 1 -Wj + M(u^ + Ug) (3.35) 

£ -w^ + M[2 - (u^+ug)] (3.36) 

Zj - < -hj + M[2 - (ug+Ug)] (3.37) 

z^ - Zj < -h^ + M[2 - (u^+ug)] (3.38) 

and 

u^ + Ug + Ug < 2 (3.39) 

Ui + U2 + U3 ^ 1 (3.40) 

"l'"2'"3 ^ {0,1} 
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Where M Is an extremely large positive number. 

Constraints (3.39) and (3.40) eliminate two possible combinations 

of (U^iUg.Ug) = (0,0,0) and (1,1,1). The binary values and their cor

responding RHS values are presented in Table 3.2. 

Table 3.2. Binary variables and associated RHS values 

Binary vars. RHS values of equations Applicable 

constraint 
equation 

"l ^2 s 
(3.33) (3.34) (3.35) (3.36) (3.37) (3.38) 

Applicable 

constraint 
equation 

1 0 0 

M 

M M M 2M M (3.33) 

0 1 0 M 

M 

M M M 2M (3.34) 

0 0 1 M M 
""j 
2M 

2M M M (3.35) 

1 1 0 M M 
""j 
2M 

-"i 
M M (3.36) 

0 1 1 2M M M M -hj M (3.37) 

1 0 1 M 2M M M M (3.38) 

Therefore, three binary variables and two additional constraints 

can generate six combinations to convert a set of six multiple choice 

constraints to the standard "AND" constraints. The RHS values -1^ + M, 

-Wj + M, etc., in Table 3.2 are simply represented by M or 2M because of 

the extremely large value of M. 

b. Three dimensional model notation Suppose the front-bottom-

left corner of the pallet is located at the coordinate (X°,Y°,Z°) in 

Cartesian coordinate space. Figure 3.5 pictorically shows the location 

of the pallet. (X°,Y°,Z°) is selected such that all boxes in set B can 

be completely placed into the large cube OABCDE (see Figure 3.5). 
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valid 

pallet 

space 
Z +H 

Y +W 

X +L 

Figure 3.5. The pallet location in Cartesian 
coordinate space 

Define the following symbols as: 

B = a collection of n boxes to be considered 

= {b^,b2,...,b^} 

(li,Wi,hi) = the dimensions of box 1 (b^) in set B. 

= length, width, and height, respectively. 

(L,W,H) = the dimenlons of a pallet 
= length, width and height, respectively. 

(X°,Y°,Z°) = pallet location in Cartesian coordinate space 

along the x-, the y- and the z-axis, respectively. 

The values of X°,Y°,Z° may be determined using the expressions 

below. 

X° = n*max(l.), 

1 ^ 
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Y° = n*max(w.), 

i ^ 

Z° = n*max(h,). 
1 1 

(x.,y.,z ) = decision variables 
= the X, y, z coordinates of the placement location 

of the front-bottom-left corner of box 1. 

u ,u ,u = artificial binary variables for converting six 

multiple choice constraints of set t to standard 

"AND" constraints, t = 1,2,..., (^) 

P, = a binary decision variable associated with the kth 

box in set B. 

Load box k onto the pallet if Pj^ = 1. 
Discard box k from set B if P, =0. 

k 

V, = the volume of box k 

= li'Wi'hi 

Rg = the desired box proportion of type g. 

C = a subset of B; consists of all boxes of size g 

® regardless of box orientation 

° ° (Ig'Wg'hg) 

("g'^g'^g)' 1 

M = an extremely large number, which can be selected 

to be twice of max{X°+L,Y°+W,Z°+H} or larger. 

r = total number of box types 

The number of boxes of each type to be considered in set B can be 

determined using the following two equations. 

n / Z n = R (3.41) 
® i=l ® 

Z n,«v. = V (3.42) 
i=l 
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where n = the number of boxes of type g to be considered in set B 
-S 

V = the volume of a pallet 
= L'WH 

Eq. (3.41) states that the ratio of the number of type g boxes to the 

total number of boxes should equal R^, the desired box proportion of type 

g. Eq. (3.42) indicates that the total cumulative box volumes should 

equal the pallet's volume. By solving eqs. (3.41) and (3.42), the number 

of boxes for type g can be obtained. The result is 

R -V 
n = ® (3.43) 

il 

The solution obtained from (3.43) should be rounded up to the next 

higher integer value. 

Each box with different orientations, either Ixwxhorwxlx 

h, must be individually considered. For each type g, n^ boxes with 

orientation 1 x w x h and n^ boxes with orientation w x 1 x h may need 

to be included in set B. 

c. Model formulation The three-dimensional pallet loading 

problem can now be formulated as a mixed 0-1 integer programming model. 

Let the three-dimensional formulation be Model III as shown below. 

Model III: 

n 

Maximize Z = E v. P. (3.44) 
k=l ^ * 

subject to 
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Avoid overlap of boxes 

(3-45) 

*i " *j — "^i MCu^^+u^g) (3.46) 

Yj - < -Wj + MCu^^+u^g) (3.47) 

yj - Yj 1 -w^ + M[2 - (u^^+u^g)] (3.48) 

Zj - < -hj + M[2 - (3'49) 

Zj, - Zj £ -h^ + M[2 - ("ti+Ucg)] (3.50) 

"tl + \2 + Ut3 - 2 (3.51) 

"tl + "t2 + "t3 ̂  1 (3-52) 

Confine placement boundary 

X, > X°P, (3.53) 
k — k 

a ?°'k 

z, > Z°P. (3.55) 
k — k 

\ 1 (X°+L) - (3.56) 

y^ _< (Y°+W) - (3.57) 

Zj^ < (Z°+H) - (3.58) 
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3) Satisfy desired box proportion 

n 

Z PL < R '( Z P ) (3.59) 
meC ® ™ 

g 

Xk'fk'Sk i " 

1 = 1,2,...,n-l 

j = 1+1,1+2,...,n 

k = 1,2,...,n 

g = 1,2,...,r 

t = 

(j-i), for 1=1 

1-1 
(j-i) + Z (n-s), for 1 > 1 

s=l 

The objective function, eq. (3.44), maximizes the total pallet 

volume occupied by boxes to be loaded. Based on George and Robinson's 

heuristic loading criteria [38], a box with larger volume is hard to 

fit late in the packing sequence. It is preferable to load the larger 

box early. The Simplex method of LP tends to make the variable having 

larger objective function coefficient enter first to the basis. This 

happens to be equivalent to the heuristic loading by first placing 

larger boxes onto the pallet, and then filling the remaining pallet 
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space with smaller boxes. The structure of this objective function 

may result in less computation time to reach an optimal solution. 

Eqs. (3.45)-(3.52) set up the position constraints to ensure that 

no two boxes overlap. This is based on the result of eqs. (3.33)-(3.40). 

Eqs. (3.53)-(3.58) confine the placement boundary of boxes. The ob

jective function, which maximizes the total volume occupied in the 

pallet cube, will force as many boxes as possible to be loaded onto the 

valid pallet space (see Figure 3.5). Whenever a box k is placed en

tirely into the valid pallet space, the associated binary variable, P^, 

is set equal to one. Otherwise, is set equal to zero. Finally, 

eq. (3.59) ensures that the total number of boxes of a given type will 

not exceed proportion of the total number of boxes in a pallet. 

In the final solution, any box having P^ = 1 is used to compose 

a pallet pattern. Any box having P^ = 0 is discarded from consideration. 

This formulated mixed 0-1 integer programming model for three-dimensional 

pallet loading problem thus gives the required number of boxes of each 

type, i.e., every box whose associated P^ equals one. It also gener

ates the exact placement location of a box on the pallet, namely the 

coordinate (Xj^,yj^,Zj^). 

4. A numerical example 

Consider a distribution warehouse using 24" x 36" pallets for 

shipment. The stacking height limit of a pallet load is 10". A cus

tomer order requires 100 units of product A and 200 units of product 

B. Product A is packaged using the 24" x 24" carton, and product B 
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using the 12" x 10" carton. It is assumed that cartons A and B have 

identical heights of 8" so that both model II (two-dimensional problem) 

and model III (three-dimensional problem) can be illustrated using this 

example. 

a. Two-dimensional model With model II, a collection of car

tons, set B, and the location of the pallet in the x-y plane, (X°,Y°), 

must be determined. 

Let B = {b^ybg.bg}, 

(X°,Y°) = (100,100), 

M = 500, 

where b^ = 24" x 24", 

b^ = 12" X 10", 

bg = 10" X 12". 

The carton proportions are obtained by calculating the order 

quantity. 

For product A, = 100/(100+200) = 1/3. 

For product B, = 200/(100+200) = 2/3. 

The notation used for this example is listed below. 

Box 

Product 

Length 

^i 

Width 

"i 

Area 

^i 

Coordinate 

(Xi'Pi) "i 

A 24 24 576 
"l 

^2 
B 12 10 120 (xg.yg) 

^2 

^3 
B 10 12 120 

^3 
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Therefore, this packing problem is equivalent to the following mixed 

0-1 integer programming problem by using model II. 

Maximize Z = 576P^ + IZOPg + 120?^ 

subject to 

(a) 

(b) 

(c) 

(d) 

Xg - -12 + 500 (u^^ + u^g) 

^1 " *2 - 500[1 - ("i2~"ll^^ 

yg - .1 -10 + 500[1 - (for b^ and b^) 

- Yg 1 -24 + 500[2 -

X3 - Xi £ -10 + 500(u2j^+U22) 

- Xg < -24 + 500[1 - ("22""21^^ 

yg - y^ < -12+500[1 - ("21~"22^^ (for bj^ and b^) 

y^ - Yg .1 -24 + 500[2 - ("11+"12)] 

*3 - *2 - + SOOCUgj^+Ugg) 

Xg - Xg < -12 + 500[1 - ("32"'^3I^3 

y^ - ygji -12 + 500[1 - ("31-^32)] (for bg and b^) 

y2 - y3 1 -10 + 500[2 - ("32+^32) 

> lOOP^ 

y^ > lOOP^ 

X, < (100+24) - 24 
1 — 

y^ < (100+36) - 24 
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(e) 

(f) 

*2 > lOOPg 

yg > lOOPg 

Xg < (100+24) - 12 

y_ < (100+36) - 10 

X3 > lOOPg 

^3 2 100P3 

X3 < (100+24) - 10 

Yg < (100+36) - 12 

< (1/3) (Pj^+Pg+Pg) 

P2 + P3 < (2/3)(P^+P2+P3) 

"tl'"t2' ̂  t=l,2,3 

Pl.Pg.P] E {0,1} 

x^,y^ 2 0, 1=1,2,3 

b. Three dimensional model With model III, the collection of 

cartons, set B, and the location of the pallet in Cartesian coordinate 

space, (X°,Y°,Z°) are selected as followu: 

(s) 

B = {b^,b2,b2}. 

(X°,Y°,Z°) = (100,100,100), 

M = 500 

where b^ = 24" x 24" x 8", 
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bg = 12" X 10" X 8", 

bg = 10" X 12" X 8". 

The carton proportions are 1/3 and 2/3 for the products A and B, 

respectively. 

The notation used for this example is presented below. 

Box 
Product 

Length 

:i 

Width 

"i 

Height 

\ 

Volume 

^i 

Coordinate 

(Xj/yi'Si) ^i 

A 24 24 8 4608 (Xi.yi.zi) ^1 

CM B 12 10 8 960 (xg.yg.zg) 
^2 

b3 B 10 12 8 960 (Xg.yg.Zg) "3 

The loading problem is equivalent to the following mixed 0-1 inte

ger programming model by using model III. 

Maximize Z = 4608P^ + SSOPg + 960?^ 

subject to 

'' *2 ~ *1 — ^ 500(u^2+"I3) 

x^ - Xg < -24 + SOOfu^^+u^g) 

yg - y^ < -10 + SOOfu^^+u^g) for b^ and b^ 

(a) ̂  ^1 ~ ̂ 2 — 500[2 - ("11+U12)] 

£ -8 + 500[2 - (u^g+u^g)] 

z^ - Zg < -8 + 500[2 - (u^^^+u^g) ] 

\ 1 1 "11 + "12 + *13 2 
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/ *3 - < -10 + SOOCUgg+Ugg) 

yg - 1 -12 + 500(u2^+U22) for and 

(b) <j y^ - < -24 + 500[2 - (U21+U22)] 

Z3 - < -8 + 500[2 - (u22+"23)] 

=1 - =3 < -8 + 500[2 - (Ugi+Ugg)] 

(c) < 

1 1 "21 "22 + "23 - 2 

*3 " ̂2 - ^°^^*32^"33) 

^2 ~ *3 - '*' SOOCUg^+Ugg) 

y3 - y2 Ji -12 + ̂ OOfUg^+Ugg) ^-OX b^ and b^ 

y2 - y3 1 -10 + 500[2 - (U31+U32)] 

Z3 - =2 - -8 + 500[2 - (U32+U33)] 

=2 " =3 - -G + 500[2 - (U31+U33)] 

1 _< U31 + U32 + U33 < 2 
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/ X. > lOOP, 
1 — 1 

> lOOP^ 

> lOOP^ 

< (100+24) - 24 

< (100+36) - 24 

, z, < (100+10) - 8 
N i  — 

' *2 > lOOPg 

yg 1 loopg 

Zz > lOOPg 

Xg <_ (100+24) - 12 

y, £ (100+36) - 10 

\ Zg < (100+10) - 8 

' Xg > lOOPg 

Yg > IOOP3 

Z^ >_ lOOPg 

x^ <_ (100+24) - 10 

< (100+36) - 12 

^ Zg <_ (100+10) - 8 

(e) < 

(f) < 

(g) 



www.manaraa.com

70 

\l'\2"t3 ̂  ^ ~ 1»2,3 

Pl.Pg.Pg E {0,1} 

^i'^i'^1 1°' 1 = 1,2,3 

For both two- and three-dimensional formulation models of this ex

ample, constraints in (a) set up the position restrictions for boxes 

1 and 2 so that these two boxes will not overlap. Similarly, con

straints in (b) and (c) are for boxes 1 and 3, and boxes 2 and 3, re

spectively. Under the restraints of (a), (b), and (c), it is guaranteed 

that no boxes will overlap. 

Constraints in (d) indicate that box 1 (b^) can only be placed in 

the large rectangle of size 124" x 136". When the resultant value of 

equals one, then box 1 is placed entirely in the valid pallet space 

starting from coordinate (100,100) and ending at coordinate (124,136) 

(see Figure 3.3). Pallet placement coordinate of (100,100) is selected 

to make sure that all boxes, b^^, b^ and b^ in set B can be loaded into 

the larger cube starting from (0,0) and ending at coordinate (124,136). 

This also guarantees that all decision variables will satisfy the require

ment of nonnegative values. Similarly, constraints in (e) and (f) con

fine the placement boundary for box 2 (b^) and box 3 (b^), respectively. 

Constraints in (g) represent that box proportions of products A 

and B must not exceed 1/3 and 2/3 of the total boxes loaded on the pal

let, respectively. 
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One of the possible optimal solutions^ using the two-dimensional 

formulated model is 

(P^.Pg.Pg) = (1,1,1) 

(x^.y^) = (100,100) 

(Xg.Yg) = (100,126) 

(Xg.Yg) = (114,124) 

("ll'"l2) (1*1) 

("21'"22^ (1>1) 

("31**32) ̂  (0,1) 

This solution gives the optimal objective function value of 816. Recall 

that initially the pallet is placed at coordinate (X°,Y°) = (100,100). 

By subtracting (X°,Y°), the resulting placement location of a box, 

(^i'^i^' be converted back to the original coordinate. This gives 

(x^.y^) = (0,0) 

(Xg.yg) = (0,26) 

= (14,24) 

This solution corresponds to the optimal pallet pattern as shown in 

Figure 3.6. 

The solution procedure will be described in the next section. 

It takes 36 seconds to determine this optimal solution using an IBM 

AT microcomputer. 



www.manaraa.com

72 

•»--12 -"i h- io-*j 

(0 ,26)  

(14,24) — 

(0 ,0)  

Figure 3.6. The optimal pallet pattern 

5. A branch-and-bound solution procedure 

The branch-and-bound principle has been established as a practical 

computational procedure for mixed integer programming since the early 

work of Lane and Doig [65]. The efficiency of a branch-and-bound al

gorithm comes from the ability to eliminate from consideration large 

subsets of potential optimal solutions. Two principal rules of eliminat

ing such subsets are 

(!) to show that no feasible completion of a given partial 

assignment exists; and 

(ii) to show that no optimal completion of a given partial 

assignment exists. 
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a. Overview The branch-and-bound algorithm consists of a sys

tematic search of continuous solutions In which the Integer variables 

are successively forced to take on Integer values. The algorithm 

starts by finding an optimal solution to the continuous problem (using 

LP procedure) where the integrality requirements are relaxed. If this 

solution is Integer, then an optimal solution is reached. If not, then 

two subproblems are formed. Assume the binary variable Uj^ has continu

ous value at current solution stage. One subproblem thus has the con

straint u^ = 0; and another subproblem has the constraint u^ = 1. The 

process of forming the subproblems is called branching. Each of these 

subproblems Is solved again as a continuous problem. Each subproblem 

is considered as a node. All these nodes whose values of the objective 

function are lower than the current best solution found for a maximiza

tion problem are eliminated from a list of nodes. It is said that the 

corresponding nodes are fathomed. The search for the optimal solution 

terminates when all the nodes are fathomed. The current best feasible 

solution gives the optimal solution of the problem. 

b. Algorithm efficiency strategies The efficiency of the 

branch-and-bound algorithm is based on the selection of the variable 

and the node to branch. Many strategies of choosing branching variables 

and nodes have been developed and surveyed in detail by Mitra [72] and 

Gupta and Ravlndran [48]. Based on experiments of Gupta and Ravlndran, 

"Most Fractional Integer Variable" and "Branch from the Node with Highest 

Bound" have performed acceptably for branch-and-bound procedure to se-
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lect branching variables and nodes, respectively. Furthermore, these 

two strategies are simple and lend themselves to computer coding. 

They are applied in the research to a branch-and-bound algorithm for 

solving the formulated mixed 0-1 model. These two branching strategies 

are described in detail as follows: 

• Most Fractional Integer Variable; This is used to select branching 

variables. This strategy selects the variable which is farthest from 

its nearest integer value. That is, choose a variable u^ from the set 

{uj^|k e B1 n B2 , 0 < u^ < 1} 

which maximizes min{u^, 1-u^^ , 

where B1 is a set of binary variables, 

B2 is a set of indices of the basic variables in the 

continuous optimal solution at the current solution 

stage. 

• Branch from the Node with Highest Bound; This is used to select 

branching node. In this strategy, the node which currently has the 

highest bound on the objective is selected for branching. 

c. The Kochenberger's procedure Kochenberger and Richard 

[63] have developed a branch-and-bound procedure which employs linear 

programming techniques to solve for continuous solutions. The proce

dure for branch-and-bound will not destroy the primal feasibility of 

the LP solution. A brief description of the procedure is as follows: 

The problem is to 

P 
Maximize Z = Z C.u (3.60) 

j=l ^ ^ 
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subject to 

P P+n 
Z a u + 2 a x b., 1=1,2,...,m (3.61) 

j=l ] j=p+l J ^ 

Uj E {0,1}, j=l,2,...,p (3.62) 

Xj 2 0» j=p+l p+n. 

The coefficients of the objective function for each binary variable u^ 

may be rewritten as 

C* = C, + MÔ, 
j j j 

where M Is an extremely large positive number. To make sure M Is suf

ficiently large, the value of M can be selected to be twice of n*max{C } 

j ^ 

or larger. 5^ Is a parameter that can be -1, 0, or +1. The new objective 

function Is 

I * Maximize Z = E C.u 
j=l J J 

Initially, all the 6^ are set equal to zero. By setting 6^ to -1 

or +1, the Uj will be forced to be zero or one, respectively, because 

of the extremely large penalty (-M) or gains (+M). If such a result 

Is not possible. It Is concluded that no feasible solution exists with 

Uj at zero (or one) and fathom (eliminate from the list of subproblems) 

accordingly. 

The Kochenberger's branch-and-bound procedure is presented, step by 

step, below. 
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STEP 1: Initialize. Set 6^ = 0 for all j. Form the LP model of eqs. 

(3.60) and (3.61) with the relaxed constraint of eq. (3.62), i.e., 

Uj ̂  1 , j™1,2,...,p. 

Put this problem on the list. Denote Z* to be the best available lower 

bound on Z (the objective function value). 

STEP 2: Select branching node. Choose the branching node from the list 

using the strategy of "Branch from the Node with Highest Bound". 

Terminate the procedure and deliver the optimal solution if the list 

is empty. 

STEP 3: Solve the subproblem using LP. Starting with the current 

basis, perform normal Simplex method until the problem at hand is solved. 

Eliminate the node from the list and return to STEP 2, if 

(i) the new objective function value is less than or equal 

to Z*; or 

(ii) 0 < uj <1 and its associated 5j ̂  0 (i.e., this solu

tion is fathomed due to infeasibility. 

Otherwise, go to STEP 4. 

STEP 4: Check all binary restrictions. If the continuous LP solution 

generated in STEP 3 is binary, then record it and update Z*. Return 

to STEP 2. Otherise, go to STEP 5. 

STEP 5: Partition. Select a fractional valued variable u^ using the 

strategy of "Most Fractional Integer Variable". Split the current LP 

model to create two new LP subproblems. In one subproblem, 6. is set 
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to -1. In the other subproblem, 6^ Is set to +1. Add these two sub-

problems to the list. Return to STEP 2. 

Since 6^ is originally set to zero, the change of the 6^ value 

thus changes the coefficient of the objective function, i.e., the co

efficient of binary variable u^ is changed from to Cy + M or - M. 

The LP's at each node (subproblem) differ only in their cost coeffi

cients. The technique of sensitivity analysis used in LP can be em

ployed to solve the additional subproblems. Starting with the current 

LP basis, a given node problem can be solved by doing a few additional 

primal points without iterating the entire LP procedure all over again. 

No basis information need be stored for each node except the current 

basis. This effort minimizes computer memory requirements and compu

tation time. 

A BASIC program implementing Kochenberger's branch-and-bound solu

tion procedure is presented in Appendix A. The example in the pre

vious section has been solved using a BASIC program on an IBM AT micro

computer. 

In addition to Kochenberger's branch-and-bound approach, there are 

many research papers which directly contribute to the formulated mixed 

0-1 integer programming model. A survey of the literature related to the 

mixed 0-1 integer programming is given below. 

d. Other computational approaches Ruthedge [81] has presented 

a Simplex method procedure to solve mixed 0-1 integer programming prob

lem. Ohtake and Nishida [73], and Davis, Kendrick and Weitzman [27] 
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have employed branch-and-bound algorithms for mixed 0-1 integer program

ming. The reduced cost branch-and-bound algorithms using the Extended 

Control Language of the IBM MPSX/370-MIP/370 mixed integer programming 

package [70] have been developed by Martin et al. [69] and Martin and 

Schrage [68]. Cote and Laughton [25] has used partitioning method which 

separates the integer from the continuous variables. He then used 

heuristics to approach the large-scale mixed integer programming prob

lems. Cooper and Farhangian [24], Healy [52] and Jeroslow and Lowe 

[61] have presented various approaches for solving the linear program

ming with multiple choice constraints. 

e. Summary The formulated mixed 0-1 model does provide exact 

solutions for the pallet packing problem. However, use of 0-1 integer 

variables and multiple choice constraints may require extremely long 

computation times to reach final optimal solutions. A problem as simple 

as the previous example consists of nine (9) continuous variables, 

twelve (12) binary variables, and forty-four (44) constraints for the 

three-dimensional model. It is time-consuming to obtain the optimal 

pallet pattern, even with the use of a computer. 

A new heuristic algorithm based on dynamic programming has been 

developed to overcome the shortcomings of the mixed 0-1 integer model. 

For the heuristic algorithm, there is trade-off between the quality of 

final solution and computation time. Only a "good" solution may be 

obtained. However, the computation time can be significantly reduced 

when compared with that of the formulated mixed 0-1 model. The heuristic 
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dynamic programming appraoch for the three-dimensional pallet packing 

problem is the subject of the following section. 

C. The Heuristic Dynamic Programming Approach 

The heuristic approach has been inspired from the early develop

mental work of Halms and Freeman [51]. Their algorithm is only applica

ble for two-dimensional pallet packing problems in which no restriction 

is placed on the number of small pieces of each size. 

The new developed heuristic procedure is carried out with a dy

namic programming (DP) algorithm to solve three-dimensional pallet pack

ing problems. The algorithm involves a sequence of iterations, each of 

which allows a higher degree of packing. Each stage in the dynamic 

programming algorithm allocates one type of box. 

Unlike traditional dynamic programming, there are two goals to be 

achieved for the heuristic DP algorithm. First, it is desired to place 

as many boxes as possible onto the pallet so as to maximize pallet 

space utilization. Secondly, for each box type, the number of boxes 

packed on a pallet (or box proportion) should not exceed some user-

specified number. These two goals usually contradict each other. One 

has to compromise between these two goals to determine a "rational" solu

tion. The recursive dynamic programming procedure and the criteria to 

determine a solution from these two conflicting goals are described in 

the sections that follow. 
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1. Maximization of pallet space usage (goal 1) 

To apply the dynamic programming procedure, the dimensions of the 

pallet and boxes of all types are restricted to integer values. It is 

assumed that the orientations of boxes and pallet are predetermined and 

remain fixed. The lengths, widths and heights of boxes and pallet are 

parallel to each other, respectively. No interchange of orientations 

is allowed. Boxes of different orientations are considered to be a 

unique type even though they may have exactly the same dimensions. 

The procedure of goal 1 only tends to maximize utilization of a pallet 

cube without restriction on the number of boxes of each type. 

Each box type is considered to be a stage in the dynamic program

ming algorithm. Also, the allocated box is placed in an index pallet, 

represented by . The dimensions of the index pallet are then 

Increased by 1 at a time from a unit cube (1,1,1) to the pallet size 

(L,W,H). 

Denote (L,W,H) = dimensions of a pallet; 

= length, width and height, respectively 

(1 ,w ,h ) = dimensions of a box of type 1; 

= length, width and height, respectively 
1' 1' 1 

V 
i 

= volume of a box of type 1 

r = total number of box types. 

Define the following allocation vectors; 
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S z •  ( C ï - ' z )  

" ('l'*2 'r' 

a, (L ,W ,H ) = 0, if any of the three arguments equals 

^ ^ ^ zero, k=l,2 r. 

ai(L^,W^,H^) is an i-dimensional vector at stage i. The jth ele

ment of aj, represents the number of type j boxes allocated in 

the index pallet (L^,W^,H^), where i = l,2,...,r and j = l,2,...,i. 

Also, define the following return function: 

" '•ax(v^a^+...+v^a_.) 

F, (L ,W ,H ) = 0, if any of the three arguments equals 

* ^ ^ zero, k=l,2,...,r. 

F.(L ,W ,H ) is the maximum return function at stage i given the 
i X X X 

index pallet (L ,W ,H ). 
X X X 

The index pallet varies from (1,1,1) to (L,W,H), and 

increases by 1 at a time. Therefore, F^(L,W,H) is the final optimal 

function value to deliver. The term a^(L,W,H) gives the required num

ber of boxes of each type. 
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a. Halms and Freeman's two-dimensional allocation procedure 

Consider first a two-dimensional case of allocation since the geometry 

of the problem can give an insight into the three-dimensional algorithm 

and so aids the understanding. Height (symbols H, H^, and h^) is ig

nored for the time being. The following two-dimensional dynamic pro

gramming procedure is adopted from the development of Haims and Free

man [51]. 

For all values of L , W such that L >1 and W > w , a box i 
3C 3C X *1 X • 1 

can be allocated as shown in Figure 3.7. 

A B 
1 

C 

H 
/ Box i y 

1 1 1 1 

G F E 

L 

Figure 3.7. Allocation of a box i at (x,y) 

Eight subrectangles, A, B, C, D, E, F, G and H, as defined in Figure 

3.7 are created by allocating a box of type i at location (x,y). This 

generates sixteen (16) combinations of the subrectangles. One of the 

combinations is 
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A+B+C = L^' (W^-Wj^-y) 

D+E = (L^-l^-x)•(w^+y) 

F+G = (1^+x)-y 

H = X'W^ 

This means four smaller index pallets A+B+C, D+E, F+G and H are gener

ated from the original index pallet of size by when a box i is 

allocated at coordinate (x,y). The subindex pallet A+B+C has the dimen

sions of (L^) by (W^-w^-y), D+E is (L^-l^-x) by (w^+y), and so on. The 

combination of these four subindex pallets is shown in Figure 3.8. 

Consider the subindex pallet A+B+C and two smaller index pallets 

A+B and C. The sum of areas covered on both A+B and C by pieces is at 

most as good as the subindex pallet A+B+C. A+B and C cannot generate 

any solution better than A+B+C. The subindex pallet A+B+C contains all 

A+B+C 

H 

D+E 

F+G 

D+E 

Figure 3.8. A combination of four subindex 

pallets 
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possible solutions of the two smaller index pallets A+B and C. There

fore, combinations like A+B and C is discarded from further considera

tion. Based on this logic, the sixteen possible combinations of sub-

index pallets are: 

1) A+B+C 

D+E 

F+G 

H 

2) A+B+C 

D+E 

F 

H+G 

3) A+B+C 

D 

E+F 

G+H 

4) A+B+C 

D 

E+F+G 

H 

5) A+B 

C+D 

E+F 

H+G 

6) A+B 

C+D+E 

F+G 

H 

7) A+B 

C+D+E 

F 

G+H 

8)  A+B 

C+D 
E+F+G 

H 

9) A+H 

G+F 

E+D 
B+C 

10) A+H 

G+F+E 

D+E 

B 

11) A+H 
G+F+E 

D 
B+C 

12) A+H 

G+F 

C+D+E 

B 

13) A+H+G 

B+C 

D 

E+F 

14) A+H+G 

B+C 

D+E 

F 

15) A+H+G 

B 

C+D 

E+F 

16) A+H+G 

B 
C+D+E 

F 

Each subindex pallet defined in terms of the dimensions is listed below. 
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(See Figure 3.7.) 

B = (l^)'(W^-w^-y) 

D = (L^-l^-x).(w^) 

F = (ii)'(y) 

H = (x)•(w^) 

A+B (1^+x)•(W^-w^-y) 

A+H (x)•(W^-y) 

B+C (L^-x). (Wĵ -w -̂y) 

C+D (L^-l^-x).(W^-y) 

D+E (L -̂li-x)•(w^+y) 

E+F (L^-x)•(y) 

F+G = 
(1^+x)•(y) 

h-h; (x)•(w^+y) 

A+B+C = (L^)•(W^-w^-y) 

A+H+G = (x).(W^) 

C+D+E = (L^-l^-x).(W^) 

E+F+G = (L^)-(y) 

For every index pallet (L^,W^) currently considered, the maximum 

return function values of the above subindex pallets have been deter

mined in the previous procedure since all these subindex pallets have 

smaller dimensions than those of the index pallet. 



www.manaraa.com

86 

Since the pallet is symmetrical, it is only necessary to evaluate 

the discrete placement of a box of type i in one-fourth of the rectangle 

(L^,W^). Observe the allocations of box i in Figures 3.9a and 3.9b. 

1 
y 

1 
A j  B 

1 
c  

1 
y 

m 
D 

1 
y G 1 F  1 E  

1 L. 

(a) 

L, 
X 

(b) 

Figure 3.9. Symmetrical allocations 

Because Figure 3.9b is equivalent to Figure 3.9a by rotating 180°, both 

patterns result in the same subrectangles. Therefore, it is only neces

sary to evaluate (x,y), the allocation of a box i in (L^,W^), from (1,1) 

to ([L^/2],[W^/2]) increasing by 1 at a time. 

For the two-dimensional case, there are sixteen combinations to be 

considered for each given value of (x,y). The objective is to select 

the combination with the maximum F^(L^,W^). The recursive function has 

the form 
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= Max< 

1) Combination 1: 

the area of a box of type i 

+ Fj^(L^,W^-Wj^-y) , the subindex pallet A+B+C 

+ F^(L^-l^-x,w^+y), the subindex pallet D+E 

+ F^(l^-hc,y), the subindex pallet F+G 

+ F^(x,w^), the subindex pallet H 

2) Combination 2: 

li'''i + Fi(Lx,Ŵ -Wi-y) + F̂ (L̂ -l̂ -x,ŵ +y) 

+ + F^(x,w^+y) 

16) Combination 16: 

\ "> \-A-V 
The maximum return function value of F^(L^,W^) is selected from one 

of the sixteen combinations of subindex pallets. In the instance that 

all return function values of these sixteen combinations are less than 

the maximum function value at the previous stage, the best previous 

function value is used for the current stage. 

b. The three-dimensional allocation of boxes Now consider the 

three-dimensional case. Twenty-six sub-cubes are created when a box i 

is allocated at coordinate (x,y,z) of a three-dimensional index pallet 

of size ' There may be hundreds of combinations of sub-index 
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pallets with these twenty-six sub-cubes. To reduce computation time, 

only six combinations of sub-index pallets are taken into considera

tion. Since not every possible combination of sub-index pallets is 

considered, only "sub-optimal" solutions may be obtained using this 

heuristic dynamic programming procedure. The allocation of a box i 

in the index pallet location (x,y,z) is shown in Figure 

3.10. Also, the six combinations of sub-index pallets are illustrated 

in Figures 3.11a, b, c, d, e, and f. 

L 

H 
X 

X 

Figure 3.10. Allocation of a box in the index 

pallet 

With an index pallet (L ,W ,H ) 

where = 1,2,...,L; > • • • > 
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= 1,2,..., W ; 

~ 1*2,...,H, 

allocate a box i at coordinate (x,y,z) in terms of the front-bottom-left 

corner of the box. For every given index pallet such that 

L > 1., W > w. and H > h., the allocated coordinate (x,y,z) should 
X X X X X X 

be changed as follows: 

X = 1,2,..., min(L^-l^,[L^/2]); 

y = 1,2,..., min(W^-w^,[W^/2]); 

z = 1,2 min(H^-h^,[H^/2). 

Then the return function and allocation vector are determined as shown 

below. 

If L < 1, or W < w, or H < h., then 
xi xi xi 

Otherwise, 

/ 

= max s 

1) V, + 

+ FjXx.Wx.h;) + 

+ F^(l^,y,h^) + 

(see Fig. 3.11a) 

2) 

+ F^(x,w^,h^) + F^(L^-l^-x,w^,h^) 

+ F^(L^,y,h^) + Fia^.W^-w^-y.h^) 

(see Fig. 3.11b) 

(3.63) 
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+ F^(l^,w^,H^-h^-z) + Fj^(l^,Wj^,z) 

(see Fig. 3.11c) 

4) + F^(x.W^,H^) + F/L^-1,-X.W,.«J 

+ F^(l^,y,h^) + Fifli'Wx-Wi-y.h^) 

(see Fig. 3.lid) 

5) Vj + P^(L,,y.ll,) + Fj(L^,W^-w^-y,H^) 

+ Fi(x."i,Hx) + F^a,-lj-x,»^.H^) 

+ + Fj/li'Wi'Z) 

(see Fig. 3.lie) 

6) + Fi(L^.y,\) + F,(L^.w,-.i-y.H^) 

+ F^(x,w^,h^) + F^(L^-l^-x,w^,hj^) 

+ F^CL^.w^.H^-h^-z) + F^(L^.w^,Z) 

(see Fig. 3.11f) 

Let e. be the unit vector. The ith element of e. is set to one, 
-1 —1 

and all other elements are set to zero. The corresponding allocation 

vectors for above seven possible function values are: 

" ÎI + V V  
+ a^(x,M^.h^) + îi(Vli-x.W^.hj) 

+ a^(l^,y,h^) + £i(li»Wx-Wi-y»h^) 
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(a)  

(b) 

Figure 3.11. Six combinations of sub-index pallets 
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(c) 

Figure 3.11. continued 
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A 

ir B7 W 
71 T 

(f) 

Figure 3.11. continued 
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2) through 6) can be obtained using a calculation similar 

to that shown in 1) 

c. The DP procedure Based on the three-dimensional allocation 

algorithm described above, the following heuristic dynamic programming 

procedure applies. 

STEP 1: Reorder the box types v^, , ..., such that 

^ i '2 - - 'r-

STEP 2; Select the box type to be allocated at the first stage. 

Let [t] represent the largest integer number no greater 

than t. Compute • 

^1^^'^x'V = ^x' "x- Let 

i = 2. 

STEP 3 : Compute the best return function value and allocation 

vector for every index pallet (L^,W^,H^). 

(a) For L^ = 1,2,...,L; 

= 1,2 W; 

= 1,2,...,H; 

allocate a box v^ at coordinate (x,y,z) in the index 

pallet (L ,W ,H ). Let MAX = 0, and 
X X X  

AL = min(L^-l^,[L^/2]); 

AW = min , [W^/ 2 ] ) ; 

AH = mln(H^-h^,[H^/2]). 

(b) For X = 1,2,...,AL; 
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calculate the function value using eq. (3.63) 

and the associated allocation vector a,(L ,W ,H ). 
-i X X X 

(c) If MAX < then 

MAX = F.(L ,W ,H ) and 
i X X X 

If (x,y,z) is not increased up to (AL,AW,AH), go to (b). 

Otherwise, go to (d). 

(d) Let F,(L ,W ,H ) = MAX, and 
i X X X 

- Î* 

If (L^,W^,H^) is not increased up to (L,W,H), go to (a). 

Otherwise, go to STEP 4. 

STEP 4; Let i = i + 1 

If i < r (total number of box types), 

. go to STEP 3. Otherwise, go to STEP 5. 

STEP 5: Deliver the solutions F^(L,W,H) and a^(L,W,H). 

2. Restriction on the number of boxes (goal 2) 

The dynamic programming procedure for goal 1 as described in the 

last section only tends to maximize the utilization of a pallet cube 

without placing any restriction on the number of boxes of each type to 

be loaded. To make the box proportion of each type satisfy some user-

specified number, criteria have been developed to select a rational 

solution from the two conflicting goals. The criteria are determined 

based on the number of boxes that have been allocated in the index 

pallet currently considered. 
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Basically, the procedure for goal 2 selects a return function 

whose associated allocation vector best fits the criteria. In case 

that no allocation vectors satisfy the criteria, the dynamic program

ming procedure then selects the return function that maximizes the 

allocated space of a given index pallet as though no restriction is 

placed on the number of boxes of each type. 

The selection criteria for a best allocation vector are based on 

the value of box ratio which is defined as follows: 

Denote r = total number of box types to be allocated 

R = the desired box proportion of type g as defined previous-
® ly, g = 1,2,... ,r 

n = the desired number of boxes of type g, which is determined 

® using eq. (3.43), i.e., 

R -V 

where V is the pallet's volume; 

v^ is the box's volume of type 1. 

a,. =the jth element (number of type j boxes allocated) of the 

^ allocation vector ^ ~ 1,2,...,r, j = 1,2,...,1. 

BR = box ratio 

r a 

= Z —^ , for stage l,2,...,r-l (3.64) 

j=l ""j 

= 2 ABS — - R.\ , for stage r (3.65) 
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where ABS(*) returns the absolute value; 

= box proportion of type j in the allocation vector 

In each stage of the dynamic programming procedure, the box ratio 

should be as small as possible. The box ratio of eq. (3.64) calculates 

the cumulative proportions of the allocated number to the desired number 

of boxes. The allocation vector associated with the minimum box ratio, 

eq. (3.64), tends to have the allocated number far smaller than the 

desired number for each type of box. This allows the subsequent stages 

to have more box allocation alternatives. The box ratio of eq. (3.64) 

is calculated for all allocation vectors in all stages except the last 

stage (stage r) of the dynamic programming procedure. 

The box ratio of eq. (3.65) calculates the cumulative difference 

between the box proportion of an allocation vector and the desired 

box proportion specified by the user. The allocation vector associated 

with the minimum box ratio, eq. (3.65), has the allocated box pro

portion closest to the desired box proportion. This box ratio is only 

calculated for the allocation vectors in the last stage (the last box 

size to be allocated). Recall that each stage of the DP procedure 

considers only one box size of a unique orientation. In case that the 

box types to be allocated in the last two stages have the same dimen

sions with different orientations (1-by-w and w-by-1), box ratio of 

eq. (3.65) should be applied for the last two stages of the DP procedure. 
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The following four rules describe the decision criteria used for 

selecting a best function value and allocation vector between goals 1 

and 2. 

Rule 1: For a given index pallet and the placement 

location (x,y,z), compute the box ratio for each allocation vector of 

the six combinations of sub-index pallets (see Figures 3.11a-f), and the 

allocation vector at the previous stage. In case that two or more com

binations have the same best function values, select the allocation 

vector that has the minimum box ratio. In this way, the subsequent 

process will have more box allocation alternatives so as to obtain a 

maximum return function value. 

Rule 2: For a given index pallet , suppose that the 

maximum function values are the same for some different box locations 

(x,y,z), where 

X = 1,2,..., min(L^-l^,[L^/2]), 

y = 1,2 rain(W^-w^,[W^/2]), 

z = 1,2,..., min(H^-h^,[H^/2]), 

then select the allocation vector such that its box ratio is as small 

as possible. 

Rule 3: For a given index pallet (L^,W^,H^), suppose no allocation 

vector a,(L ,W ,H ) exists such that 
- 1  X X X  

1 , for all j, 

then let Fj^(L^,W^,H^) = maximum function value without considering the 
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restriction on the number of boxes. Since no solution exists for goal 

2, the return function that has the maximum value is selected. Rules 

1 and 2 are still applied to select the maximum value. 

Rule 4: For a given index pallet, suppose that at least one al

location vector a.(L ,W ,H ) exists such that 
-i X X X 

1 "j ' for all j , 

then let = the best function value selected from those that 

their corresponding allocation vectors satisfy a^^ £ n^, for all j. In 

this case, the maximum function value and its corresponding allocation 

vector are selected among the candidates which have all their allocated 

number less than the desired number of boxes of every type. 

The above four selection rules for determining a best return 

function value and allocation vector are implemented in STEP 3 of the 

dynamic programming procedure for goal 1 (see the last section). 

A BASIC program Implementing the heuristic dynamic programming 

procedure is presented in Appendix B. This program has been employed 

to determine the optimal pallet patterns used in the simulation. 

c. Post-solution adjustment Because of the design nature of 

the heuristic dynamic programming procedure, goal 1 (maximizing the 

utilization of a pallet cube) has a higher priority than goal 2 (satis

fying desired box proportion). The final solution generated by the 

dynamic programming procedure may only give a value that approximates 

the desired box proportion. 
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However, a larger box can be always substituted with one or more 

smaller boxes and still maintain the feasibility of the pallet pattern. 

A feasible pallet pattern also holds by deleting some number of boxes 

from the heuristic DP solution, if the stability of a pallet load is not 

the main consideration. Many alternatives with different box propor

tions and pallet space utilizations can be generated by substituting 

or reducing number of boxes. It is up to the user to weigh the im

portance between goals 1 and 2, and select the best pallet pattern 

from these alternatives. 

Consider the following example. Boxes of two different sizes, 

1x2x1 and 2x2x2, are to be loaded onto a pallet of size 4x4 with the 

stacking height of 4. The desired box proportions for box sizes 1x2x1 

and 2x2x2 are 0.67 and 0.33, respectively. The heuristic dynamic pro

gramming procedure yields the following solution to this problem. 

8 boxes for 1x2x1, and 

6 boxes for 2x2x2. 

This solution completely fills the pallet space of 64. The solution's 

corresponding box proportions are 0.57 and 0.43 for box sizes 1x2x1 and 

2x2x2, respectively, which are not the desired box proportions. 

Nevertheless, one box of 2x2x2 is equivalent to four boxes of 

1x2x1. With this substitution, the original solution can be changed 

to 

12 boxes for 1x2x1, and 

5 boxes for 2x2x2. 
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This solution still maximizes the use of pallet space. The solution's 

corresponding box proportions are 0.70 and 0.30 for box sizes 1x2x1 

and 2x2x2, respectively. These also differ from the desired box pro

portions. 

By deleting two boxes of size 1x2x1, the above solution can be 

further changed to 

10 boxes for 1x2x1, and 

5 boxes for 2x2x2. 

This combination of boxes uses only 60/64's of the pallet's vol

ume. However, this solution gives exactly the desired box proportions, 

which are 0.67 and 0.33 for box sizes 1x2x1 and 2x2x2, respectively. 

The solution revisions are summarized in Table 3.3. 

The user may select the solution of box substitution if he/she 

feels the use of pallet space is more important than box proportion. 

In contrast, other solutions may be selected if the desired box pro

portion must be satisfied. 

Table 3.3. Solutions with substitution and reduction of boxes 

Number of box Box proportion Use I 

Solution (1x2x1) (2x2x2) (1x2x1) (2x2x2) pallet 1 

Heuristic DP 8 6 0.57 0.43 64 

Box substitution 12 5 0.71 0.29 64 

Box reduction 10 5 0.67 0.33 60 
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The heuristic dynamic programming procedure can be used to deter

mine the substituted number of smaller boxes for one larger box. The 

base of the larger box can be considered as a pallet. The length and 

the width of the larger box are used as the dimensions of the pallet. 

The height of the larger box is used as the stacking height of the 

pallet. One or more smaller box sizes can be considered in the dynamic 

programming procedure to substitute for the larger box. 

With the substitution and reduction of boxes, many possible alter

nate pallet patterns can be created. The user may select the "best" 

pallet pattern from these alternatives according to the importance of 

box proportion and pallet space utilization. 

The developed mixed 0-1 integer programming and heuristic dynamic 

programming models can be used to generate an optimal pallet pattern. 

The placement location data associated with the pallet pattern can be 

used as input to a robotic control program for automatic palletizing. 

The development of robotic palletizing programs and design of 

the robotic palletizing system are the subjects of the following chap

ter. 
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IV. PALLETIZING SYSTEMS AND 

ROBOT PROGRAMMING 

A. Introduction 

Robotic palletizing systems can be implemented for both warehous

ing and manufacturing industries. For warehousing, goods are collected 

from a reserve storage area according to customer orders. For manu

facturing industries, products are usually produced according to master 

production schedules. Robotic palletization can be most cost effective 

for the factories producing many products in small lots and in dif

ferent sizes. Robots provide the best solution to accommodate the 

continuous changeover of products since many pallet patterns can be 

simultaneously stored in computer memory. 

Because of the random nature of incoming box sizes to the robotic 

palletizing cell, care must be taken in the overall robotic palletiza

tion design. Two palletizing approaches — dynamic pallet patterns, 

and multi-pallet packing with turntables — can be used to overcome the 

random arrivals of various box sizes. These two approaches can reduce 

the demands on off-line box storage areas and robot movements to and 

from these storage areas. 

A Rhino XR-2 robot [83] has been employed in this research to in

vestigate the performance and feasibility of the robotic palletizing 

system. The hardware and software aspects used to construct a robotic 

palletizing cell are presented in this chapter. An algorithm that 

transforms the x, y, z coordinates to Rhino robot's joint coordinates 
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has been developed. Since the repeatability of the Rhino XR-2 robot 

is not sufficient for this palletizing task, a software control pro

gram has also been developed to enable the Rhino robot to reset itself 

to its home position. 

In addition, a palletizing control program that carries out the 

entire robotic palletizing operations is described in this chapter. 

Data input requirements for the palletizing program are also presented. 

B. Two Palletizing Approaches 

1. Dynamic pallet patterns 

Boxes of various sizes arrive at the robotic palletizing cell in 

a random fashion. Whenever box size distributions (proportions) from 

the in-feeding conveyor are significantly changed, a new pallet pattern 

should be immediately generated to accommodate this variation. How

ever, due to long computation time requirements and limited computa

tion capability of present industrial robots, on-line determination 

of an optimal pallet pattern using the developed mixed 0-1 integer or 

heuristic dynamic programming model is not feasible. 

One method to cope with this problem is to employ a "jukebox" 

approach. By taking advantage of large memory storage capability of 

industrial robots, ten or more different pallet patterns may be simul

taneously stored in computer memory. The possible pallet patterns 

can be pre-determined using the formulated models with different mixes 

of box size proportions. When a box size distribution is changed, the 

computer then searches for an appropriate pallet pattern whose pre
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determined box size proportions represent the best "match" of the pro

portions of box sizes to be loaded. In this way, more boxes can be 

directly loaded onto pallets without going through the off-line storage 

areas. 

Automatic monitoring devices connected with the robot's control 

unit can be employed to detect the change of box size distributions. 

Every box on the in-feeding conveyor is recorded before it arrives at 

the robotic palletizing cell. 

When a pallet is full, the computer examines the boxes in queue 

to determine the incoming box size distribution. The look-ahead queue 

length of boxes can be determined using the following expression. 

Q-1 Q 
Z V. < aV < Z V. (4.1) 

i=l i=l 

where v, = the volume of the ith box in queue; the first box, v^, is 

the one at the robot's pick-up position. 

V = the volume of a pallet 

a = look-ahead factor of queue length 

Q = the last box of the look-ahead queue 

= total number of boxes in the look-ahead queue 

Initially, the look-ahead factor a is set to 1, i.e., boxes in 

queue are counted until the cumulative box volumes reach the volume of 

a pallet. The frequency of each box size in the look-ahead queue is 

converted to a proportion, which is calculated as follows: 
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box proportion _ number of boxes of size 1 in observed queue length 

of size i ~ total number of boxes, Q 

The calculated box size proportions are compared with the reference 

proportions which are stored in computer memory prior to the palletiz

ing process. If the difference between the calculated and reference 

proportions exceeds some user-specified tolerance, the robot's control 

units will search for an appropriate pallet pattern whose reference pro

portions match fairly well with the box size proportions of the ob

served queue. The robot's control unit will then signal the robot and 

switch the pallet pattern. 

In case that the calculated box size proportions determined from 

eq. (4.1) do not yield a good match with any pre-stored reference pro

portions, the look-ahead factor a may be altered to a larger number, 

say 2. This extends the look-ahead queue length. The maximum value of 

a may be subject to the conveyor length and available space of the off

line storage areas. 

The determination of a best look-ahead factor a will be carried 

out using simulation in a latter section of Chapter V. 

2. Multi-pallet packing with turntables 

With multi-pallet packing, the robot can load two or more pallets 

simultaneously so long as the robot's work envelope is sufficiently 

large. Whenever a box is picked up by the robot, the palletizing con

trol program will search for an available pallet space from these si

multaneously loaded pallets. In case that the placement of the box 
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on any one of the pallets is not possible, the robot places it in the 

off-line storage area. The stored box will be loaded onto the pallet 

as soon as a pallet space for the specific box size becomes available. 

For multi-pallet packing, a priority number is assigned to each 

pallet. The pallet with the highest priority number receives a re-
é 

quired box first. When a pallet is fully loaded, it will be removed 

using fork-lift trucks or automatic transfers. An empty pallet is 

then inserted. A lowest priority number is reassigned to this empty 

pallet. The priority numbers are increased for the remaining pallets 

which are not fully loaded. Consider a four-pallet packing operation. 

The change of priority number of the four pallets can be represented 

by a rotation cycle as shown below. 

PRI0=4 

PRI0=2 
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where = pallet number i 

PRIG = priority number; the larger the number, the higher 

the priority 

Initially, assign priority 4 to pallet 1, 

priority 3 to pallet 2, 

priority 2 to pallet 3, and 

priority 1 to pallet 4. 

When pallet 1 is full, then reassign 

priority 4 to pallet 2, 

priority 3 to pallet 3, 

priority 2 to pallet 4, and 

priority 1 to pallet 1. 

This is equivalent to rotating clockwise the cycle by 90°. Likewise, 

the new assigned priority numbers can be obtained in this manner when

ever a pallet is full. 

Due to the limitations on the size of the robot's work envelope, 

at most three 48" by 40" GMA (Grocery Manufacturers of America) or 1200 

mm by 800 mm (European Exchange) pallets can be simultaneously loaded. 

One way to increase the robot's work envelope is to use moving-

base tracks. With this method, the robot is mounted on some form of 

transport system which moves along a set of tracks. This method re

quires the installation of the transport system which may not be pos

sible or economical. Also, an industrial robot can be as heavy as 

5,000 lbs. This means a powerful drive system is required for trans

port devices, and a relatively long traveling time results. 

To minimize the cycle time of loading a box onto the pallet, turn

tables can be used instead of moving-base tracks. A turntable can be 

installed in front of a palletizing robot. Only part of the turntable 
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needs to be contained within the robot's work envelope. A layout of 

a four-pallet turntable system is illustrated in Figure 4.1. 

As many as four pallets can be simultaneously loaded using this 

turntable. Note that only pallet 1 (PI in Figure 4.1) is contained 

within the work envelope. The turntable interfaces with the robot's 

control unit. When pallet 2 (P2) is called for, the turntable rotates 

90° so that pallet 2 becomes reachable to the robot. The remaining 

area of the robot's work envelope can be used to install a second turn

table, or store boxes not immediately available on the pallet. The four-

pallet turntable may be replaced by a larger eight-pallet turntable. 

The robotic palletizing cell with an eight-pallet turntable is shown 

in Figure 4.2. This gives each box size at least eight storage buffers. 

Pallet 

\ Robot 

Turntable 

Work envelope 

Figure 4.1. A four-pallet turntable system 
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Wasted area 

Pallet 

Robot 

"T  
Work envelope 

Eight-pallet turntable 

Figure 4.2. An eight-pallet turntable system 

However, an eight-pallet turntable results in more wasted space when 

compared with a four-pallet turntable. The shaded area in Figure 4.2 

represents the wasted space of an eight-pallet turntable. 

The turntable system also provides flexibility for distribution 

warehouses. It is especially suited for the warehouses in which many 

customer orders for small quantities are requested daily. With a 

four-pallet turntable, four different pallet patterns may be presented 
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on the turntable simultaneously. Hence, a robotic palletizing station 

can manage four different customer orders. 

For the overall design of a robotic palletizing cell, the dynamic 

pallet patterns and turntable systems should be integrated together to 

construct a robust automatic palletization system. The dynamic pallet 

patterns and multi-pallet packing with a four-pallet turntable have been 

carried out using a physical simulator. The performance of these two 

palletizing approaches will be discussed in Chapter V. 

C. The Robotic Palletizing Cell 

In an industrial palletizing system, the robot used for palletiz

ing must be able to handle boxes with large size and weight ranges. 

Cartesian, spherical, and jointed-arm industrial robots have been ap

plied successfully in palletizing [80,89]. For instance, a Cincinnati 

3 
Milacron T -566 jointed-arm robot has been successfully used in pal

letizing [89]. 

This research has utilized a table-top Rhino XR-2 robot to imple

ment the palletizing task. A Rhino conveyor and a Rhino turntable have 

also been employed to construct a miniature physical simulator of a 

robotic palletizing cell. This physical simulator has been used to 

collect palletizing statistics and verify the performance of the ro

botic palletizing system. 

The palletizing hardware and software requirements using the Rhino 

XR-2 robot are the subjects of the following sections. 
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1. The equipment/hardware 

a. Rhino XR-2 robot The Rhino XR-2 is a table-top, jolnted-

arm robot with five degrees of freedom. The movement of the manipu

lator is driven by the five DC servo motors. Each motor has two op

tical encoders. One is used to determine how far a motor has moved by 

counting the encoder holes. The other is used to determine in what 

direction the motor is moving. The structure of the Rhino XR-2 robot 

is illustrated in Figure 4.3. 

The movements»of the five DC motors for base, shoulder, elbow, 

pitch and roll are controlled via a Rhino controller. The controller 

Figure 4.3. The structure of the Rhino XR-2 

Source: reference [86] 
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is an eight-axis controller that is operated from the RS-232C port 

of a microcomputer. It can control up to eight motors simultaneously. 

b. The Rhino conveyor The Rhino conveyor is used as an in-

feeding device to deliver boxes into the robot's pick-up position. 

This conveyor is driven by a DC servo motor and is monitored with an 

optical encoding system. The conveyor can be directly operated from 

the Rhino controller under the control of a microcomputer. The Rhino 

conveyor is shown in Figure 4.4. 

Figure 4.4. The Rhino conveyor 

c. The Rhino turntable A Rhino turntable has been employed 

to simulate the system of multi-pallet packing. The turntable is 

twelve (12) inches in diameter. Up to four 4" by 4" pallets can be 

placed on the table at a time. The turntable is also driven by a DC 

servo motor and is monitored with an optical encoding system. The 
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Rhino controller supplies the motor with power and provides the decod

ing for the optical encoders. The Rhino turntable is illustrated in 

Figure 4.5. 

Figure 4.5. The Rhino turntable 

d. The Rhino vacuum gripper The Rhino vacuum gripper is used 

to simulate an industrial vacuum system. It consists of a vacuum cup 

to allow the lifting of objects by converting the air pressure into 

vacuum. The actuation and release of holding force of the vacuum cup 

can be controlled from the Rhino controller under the control of a 

microcomputer. Since the degrees of repeatability and placement reso

lution of the Rhino XR-2 robot are not sufficient for the palletizing 

task, a spring mechanism has been used to accommodate variations in 

placement accuracy. The configuration of the vacuum gripper and spring 

yoke is shown in Figure 4.6. 
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Vacuum 

cup 

Spring 

Figure 4.6. The vacuum gripper and spring-loaded yoke 

e. The RS-232C interface RS-232C was originally developed to 

standardize the interface between a modem and a terminal. The Rhino 

controller (modem) is connected with a T1 Professional computer (ter

minal) via the RS-232C interface. This serial I/O port transmits each 

data byte bit by bit between the controller and the computer. The RS-

232C interface between the controller and the T1 computer is connected 

as a null modem. The connections are shown in Figure 4.7. This serial 

communications protocol uses 9600 baud, 7 bits, even parity and 2 stop 

bits to transmit data between the controller and the computer. The 

BASIC statement required to support RS-232C asynchronous communication 

is presented below. 

OPEN "COMl: 9600,E,7,2" AS H file number> 
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1 
2 
3 

4 

5 

6 
7 

8 
20 

>c  
1 
2 
3 

4 

5 

6 
7 
8 

20 

Host computer Rhino controller 

pin 2 Transmitted Data 

pin 3 Received Data 

pin 4 Request to Send 

pin 5 Clear to Send 

pin 6 Data Set Ready 

pin 7 Signal Ground 

pin 8 Data Carrier Detect 

pin 20 Data Terminal Ready 

Figure 4.7. The connections between computer and controller 

2. Software for the Rhino robot 

a. Rhino control commands The T1 Professional computer can 

give the Rhino controller four separate BASIC commands to control eight 

DC motors. These four commands are: 

• PRINT #<filename>,"abnnn" : STARTS a specified motor with a 

specified number of encoder holes in a specific direction. 

The specified number is added to the error register. In 
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this PRINT statement, 

a = A,B,C,D,E,F,G, or H corresponds to one of eight motors; 

b = + or - represents the motor's moving direction; 

nnn = a three-digit number ranging from 000 up to 127. 

• PRINT //<filename>,"aX" : STOPS a specified motor instantly 

and clears the rror register. In this PRINT statement, 

a = A,B,C,D,E,F,G, or H corresponds to one of eight motors. 

•PRINT #<filename>,"a?" : READS the error register and returns 

the value indicating how far a specified motor is from its 

stopping point. In this PRINT statement, 

a = A,B,C,D,E,F,G, or H corresponds to one of eight motors. 

• PRINT #<filename>,"I" : requests the controller for the STATUS 

of six interrupt lines. The six lines are organized as the 

limit switches for motors C, D, E, F, G, and H. They are used 

to detect the limit switch closures for these six motors. This 

status command can be used to reset the Rhino robot to its 

hard home position. If all microswitches are open, the con

troller will return a number of 95. If any combination of the 

microswitches is closed, this number will be decreased as 

follows : 

Switch Decrement value 

C 1 

D 2 

E 4 

F 8 

G 16 

H 32 
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b. Coordinate transformations There are two approaches to 

control the movements of the manipulator. One is a teach program. 

The other is a Cartesian coordinate program. With the teach program, 

the user enters the data manually by moving the arm to each of the 

desired positions. The computer counts and memorizes the number of en

coder holes each joint moves. 

The Cartesian coordinate program accepts information of the loca

tions which are defined by their Cartesian coordinates. The x, y, z 

coordinates of desired positions are transformed to the robot's joint 

coordinates. The joint angles of the robot arm are then converted to 

the encoder holes. These transformed values can be used by the control 

program to control each activity of the joint. 

Due to the complexity of palletizing operations, and the high 

number of possible pick-and-place positions, the teach program is often 

not practical. A Cartesian coordinate program has been developed to 

control the Rhino robot for palletization applications. This section 

described how Cartesian and joint coordinates are defined and how the 

transformation solutions are derived. This transformation solution is 

based on the procedure described in reference [79]. 

The kinematic model of the Rhino XR-2 robot is shown in Figure 

4.8. The model indicates how each joint is articulated, how the joint 

angles are measured, and the distance between joints. 

Define 0^ = the joint angle of the base, 

Gg = the joint angle of the shoulder. 
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z - a x i s  

x-oxls 

Figure 4.8. Kinematic model of the Rhino XR-2 

0^ = the joint angle of the elbow, 

H = distance from the table-top to the shoulder joint, 

L = distance from shoulder joint to the elbow joint, 

= distance from elbow joint to the wrist joint, 

G = distance from wrist joint to the end of the gripper, 

X = the distance of the desired end point in front of the 

arm; measured from the base pivot along the x-axis, 

Y = the distance of the desired end point to the left 

(or right) of the arm; measured from the base pivot 

along the y-axis, 

Z = the vertical height of the desired end point above 

the table-top. 
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These symbols are also shown in Figure 4.8. 

It is desired to keep the gripper always parallel to the z-axis. 

Therefore, no transformation of the wrist angle is required. The first 

step of the transformation is to determine the base angle, 0^^. The top 

view of the arm is shown in Figure 4.9. 

y-axis 

X-axis 

Base X 

Figure 4.9. Top view of the arm 

It follows that 

90°SGN(Y), for X = 0 

^ = ( TAN"^(Y/X), for X > 0 

^ {180°-TAN"1(|Y/X|)}SGN(Y), for X < 0 

(4.2) 

where SGN(Y) = 1, if y > 0, 

= -1, if y < 0. 
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The second step is to determine the shoulder angle, Gg, and the 

elbow angle, 8^. The shoulder-elbow-wrist triangle is shown in Figure 

4.10 using the new translated coordinate system in which the r-axis 

is the one along the direction of the robot arm (see Figure 4.9). The 

new origin (0,0) is defined to be at the shoulder joint. 

z-axis 
Elbow 

Wrist 

Shoulder 

(0 ,0 )  

Figure 4.10. The shoulder-elbow-wrist triangle 

Let RQ = /x^ + , (4.3) 

Zq = Z + G - H, (4.4) 

as defined in Figures 4.9 and 4.10. 

Three new angles a, 3, and (j) defined in Figure 4.10 are introduced 

to obtain the solution. From Figure 4.10, obtain 

B = TAN"^(Zq/RQ) (4.5) 
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Figure 4.11. Simplified triangle 

The shoulder-elbow-wrist triangle is now redrawn as shown in Figure 

4.11. The triangle can be partitioned into two equivalent right tri

angles. The length of each base, b, and the height, h, of the right 

triangles are 

b = (/ZQ + RQ)/2 , 

and 

h = - b^ . 

This yields 

a = TAN"^(h/b) = TAN"^ /4L^/(R^ +zh - 1 . (4.6) 
0 0 

From Figure 4.10, 

Gg = a + 3 (4.7) 

Since + <j) + 9^ - 180° and (j) + a + a = 180°, then 



www.manaraa.com

123 

02 = a - 3 

The elbow angle 9^ is defined as the angle above the horizontal. The 

sign of 0^ should be changed since 0^ in Figure 4.10 is measured below 

the horizontal. Therefore, 

0 ]  =  6  -  a .  ( 4 . 8 )  

The third step of the coordinate transformation is to determine 

the roll angle of the hand, 0^. In this research, the hand always 

points straight down. Also, the pallets are parallel to the x- or 

the y-axis when they are placed in the work envelope. Therefore, the 

Rhino robot hand must be parallel to the y-axis no matter where the 

arm moves. 

Roll should be measured with respect to the Cartesian frame. With 

the hand pointing straight down, the roll angle to keep the hand orien

tation fixed along the y-axis can be determined from the base angle, 

0^. The roll angle in the four quadrants of the x-y coordinate is cal

culated as follows (see Figures 4.12 and 4.13): 

Let 101 represent the absolute value of the angle 0. 

When X > 0, 

In quadrant I, the roll magnitude = |0^| and the wrist should 

rotate clockwise (position direction). 

In quadrant II, the roll magnitude = |0i| and the wrist should 

rotate counterclockwise (negative direction). 

Thus, the roll angle 0, = 0_, for X > 0. 

When X < 0, 
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-y 
base 

Figure 4.12. Roll angles in quadrants I 

and II 

-y 

III IV 

-X 

Figure 4.13. Roll angles in quadrants III 

and IV 
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In quadrant III, the base angle, 8^, is a negative number. 

The roll magnitude = |l80° + 0^| and the wrist should rotate 

clockwise. 

In quadrant IV, the base angle, 0^^, is a positive number. 

The roll magnitude = |l80° - 0-| and the wrist should rotate 

counter-clockwise. 

Thus, the roll angle 0^ = 180° + 0^ > 0, for X < 0 and Y £ 0; 

= 0^ - 180° <0, for X < 0 and Y > 0. 

The last step of the coordinate transformation procedure is to 

convert the joint angles to the encoder holes. The conversion factors 

between encoder holes and joint angles are shown in Table 4.1. 

Table 4.1. Conversion factors between holes and joint angles 

(source: Reference [83]) 

Motor Joint 
Holes per 

revolution 
Holes per degree 

A Roll 1496.0 4.15 

B — —  1496.0 4.15 

C Gripper 4541.3 12.61 

D Elbow 3144.0 8.73 

E Shoulder 3144.0 8.73 

F Base 2620.0 7.28 
G Conveyor 2620.0 7.28 

H Turntable 2620.0 7.28 

A summary of this coordinate transformation solution is given in 

Table 4.2. A BASIC program implementing this solution is presented in 

Appendix C (subroutine starting at line 4230). 

c. Simultaneous movement of the joints Since the Rhino's START 

command (PRINT "abnnn" described previously) can only move one motor/ 
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Table 4.2. Summary of the coordinate transformation 

Step Operation 

1 

2 

3 

4 

5 

6 

7 

Determine X, Y, Z 

Base angle: 

90°*SGN(Y), for X = 0 

TAN"^(Y/X), for X > 0 

{180° - TAN~^(|Y/x|)}VfeSGN(Y), 
for X < 0 

= /x^ + Y^ 

ZQ = Z + G - H 

3 = TAN"^(Zq/RQ) 

a = TAN"^ Al^/CRq+ZQ) - 1 

Shoulder angle: 

02 = a + 3 

Elbow angle: 

Bg = g - a 

Roll angle: 

»4 = 

0^, for X > 0 

180° + 0^, for X < 0 and y ̂  0 

0j^ - 180°, for X < 0 and y > 0 

10 Convert joint angles to encoder holes 

joint at a time, the robot movements may look awkward if the three ma

jor joints (base, shoulder and elbow) are moved separately. The robot's 

movements between the current position and target position should be 

a relatively smooth path. This means that if the base joint moves 200 



www.manaraa.com

127 

encoder holes, the shoulder joint moves 8 holes, and the elbow joint 

moves 4 holes, the movements should be broken up so to have smaller 

movement ratios as shown below. 

Movement sequence Ratio (base : shoulder : elbow) 

1 50 2 1 

2 50 2 1 

3 50 2 1 

4 50 2 1 

Total 200 8 4 

The software has to take on the task of interpolating the commands 

so that the movements of the base, the shoulder and the elbow are at 

least pseudo-simultaneous. The roll movement of the hand is separated 

from the three joints. Roll movement is carried out after the three 

major joints complete their movements. 

The error register for each motor can only store a maximum count 

of 127. Therefore, the encoder holes to be moved must be divided into 

smaller values to prevent register overflow. The Rhino's read command 

(PRINT "a?") is used to read out the current stored number in the er

ror register. If the read-out number is less than 127, then a small 

number may be added to the register. If this is not possible, the 

program must wait until the number in the register is reduced to an 

acceptably low number. This procedure of adding small number to the 

register is repeated until the total numbers added reach the amount of 

desired encoder holes for a specific motor movement. Furthermore, the 
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movement in terms of encoder holes for each joint should be as small 

as possible so that a smooth and simultaneous-like trajectory can be 

obtained. However, the number of encoder holes for each individual 

movement should not be too small; otherwise, the time delay and jerks 

between robot movements may occur. From experiments, it has been found 

that six is an adequate number to obtain smooth movements of the robot 

joints. 

The procedure to yield smooth and pseudo-simultaneous movements 

of the base, the shoulder and the elbow is described as follows: 

STEP 1: Obtain the numbers of encoder holes of the three major 

joints using the coordinate transformation program. 

STEP 2; Sort the numbers of encoder holes of the three major joints 

in nonincreasing order. 

Let the order be Nl, N2 and N3, and N1 N2 ̂  N3. 

STEP 3 : Calculate the movement ratios and initialize the pa

rameters. 

Let R2 = N2/N1 and R3 = N3/N1; 

COUNT = 0; 

MAXHOLE = Nl; 

ST0RE2 = 0; 

ST0RE3 = 0. 

STEP 4: Check whether the current number in the error register 

related to Nl is less than 121. If it is larger than 121, 

then wait until the number is decreased to 121 or less. 

Otherwise, move the motor associated with Nl by the amount 

of encoder holes which is specified by the value of 
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min(6, MAXHOLE). 

Let COUNT = COUNT + min(6, MAXHOLE) 

MAXHOLE = MAXHOLE - 6 

STEP 5: Let ROTATE = INT(C0UNT*R2) and 

MOVE = ROTATE - ST0RE2, 

where INT(') returns a largest integer number no greater 

than the one in the parentheses. 

Move the motor associated with N2 by the amount of holes 

specified by the value of MOVE. 

Let ST0RE2 = ROTATE. 

STEP 6; Let ROTATE = INT(C0UNT*R3) and 

MOVE = ROTATE - STORES. 

Move the motor associated with N3 by the amount of holes 

specified by the value of MOVE. 

Let STORES = ROTATE. 

STEP 7: If MAXHOLE is decreased to zero or a negative number, 

terminate the procedure. Otherwise, go to STEP 4. 

A BASIC program implementing this procedure is presented in Appendix 

C (subroutine starting at line 4490). 

d. Self-resetting Since the hardware repeatability of the 

Rhino XR-2 robot is not sufficient for the palletizing task, a software 

control program has been developed to overcome this problem. This 

software program allows the Rhino robot to reset itself to its "hard" 

home position. 
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In the Rhino XR-2 system, the reset position (hard home posi

tion) is defined as follows: 

• Robot facing straight forward on the base (along the x-axis) 

• Shoulder straight up (along the z-axis) 

• Elbow straight out forward (parallel to the x-axis) 

• Hand straight down (parallel to the z-axis) 

This hard home position corresponds to the x, y, z coordinates, 9", 0", 

12.8", respectively. 

The Rhino's hand position is fixed throughout the entire palletizing 

process. No resetting is required for the hand. The reset positions of 

the base, the shoulder and the elbow can be detected using micro-

switches. By mounting three microswitches at the proper locations of 

the three major joints, the hard home position of the robot can be de

fined. These microswitches are arranged to be read from the controller. 

Under ontrol of the software, a motor can be stopped by a microswitch 

after detecting that the switch is actually closed. The status command 

(PRINT "I") is employed to read out the status of these three switches. 

A software routine is then carried out to determine whether these micro-

switches are open or closed. A software loop is used to move a motor 

one encoder hole at a time. The status command "asks" the Rhino con

troller each time if the microswitch under consideration has closed. 

If it has closed, the loop then terminates. Otherwise, the loop con

tinues . 

Because of the mechanical design of the cam and the microswitch, 
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the switch will close at different reset positions if the arm approaches 

the microswitch from different directions. To guarantee the arm will 

reset Itself to the same hard home position no matter what direction 

it is moving from, a software routine has been implemented to address 

this problem. From experiments, it has been found that the differences 

of reset positions in terms of encoder holes between two opposite direc

tions are as follows; 

Switch Joint Difference (holes) 

D Elbow 74 

E Shoulder 91 

F Base 109 

Also, it has been found that the joints will stop exactly at the 

desired reset positions if they are approached from the following direc

tions. 

Switch Joint Approaching direction Sign 

D Elbow Down -

E Shoulder Forward + 

F Base Counter-clockwise -

In case that any joint is approached from the direction opposite 

from the directions, the associated offset number of holes is used to 

carry out additional joint movement. This guarantees that the arm will 

reset itself to the same hard home position every time. 

The following describes the reset procedure, step by step. 
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STEP 1: Move the arm from the current position to the hard 

home position at coordinate (.9", 0", 12.8"). 

STEP 2: Read the status of the microswitches. 

If any of the three switches is closed, move the 

associated joint away from the switch for a fixed number 

of encoder holes from a pre-determined direction. 

STEP 3: Let DIRECTION = for base motor's moving direction. 

STEP 4: Let COUNT = 1. 

STEP 5: Move the motor associated with the base one encoder hole. 

Read the status of the microswitches. If the switch 

related to the base motor is closed, then go to STEP 7. 

STEP 6: Let COUNT = COUNT + 1. 

If COUNT _< 150, go to STEP 5. 

If COUNT > 150, then move the arm back to its original 

position. Change DIRECTION = and go to STEP 4. 

The maximum count of 150 corresponds to 20°, 17°, and 17° 

joint angles of the base, the shoulder and the elbow, 

respectively. From experiments, this number is sufficient 

to allow the Rhino robot to reach its reset position. 

STEP 7: If the switch is closed with DIRECTION = then go 

to STEP 8. Otherwise, move further the base motor for 109 

encoder holes to offset the reset deviation. 

STEP 8: Repeat STEPS 3 through 7 for the shoulder and the elbow 

with proper moving directions and offset numbers of en-
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coder holes. The reset procedure is complete when all 

three switches D, E and F, are closed. 

A BASIC program implementing the reset procedure is presented in 

Appendix C (subroutine starting at line 6070). 

D. Palletizing Control Program 

In this section, a software control program which implements the 

automatic palletizing task is described. This palletizing control pro

gram deals with two different conditions of box size distributions. The 

first assumes that the incoming box size distribution is known. The 

pallet pattern is changed only when a specific box size distribution 

changes. The multi-pallet packing approach can be implemented for the 

known-distribution situation. 

The other condition assumes that the box size distribution is un

known. The pallet pattern may be changed whenever a pallet is full. 

Since the pallet pattern may be changed after every full pallet, only 

single-pallet packing can be employed for the unknown-distribution situa

tion. 

Compared with two-dimensional pallet packing, the required data 

for a three-dimensional pallet pattern is far more complicated. Elabo

rate consideration must be given to obtain efficient palletizing opera

tions. The input data requirements for the palletizing control program 

are discussed in the section that follows. 



www.manaraa.com

134 

1. Data input 

Unlike two-dimensional palletizing, the concept of "layer" no 

longer applies for the three-dimensional case. Consider a three-

dimensional pallet pattern as shown in Figure 4.14. In the two-

dimensional case, a layer will be placed above another layer, from the 

bottom to the top. However, box 5, for example, in Figure 4.14 need 

not wait until boxes 1, 2, 3 and 4 are placed on the pallet. Box 5 

can be placed onto the pallet so long as box 1 has already been loaded. 

The placement sequence of box 5 is independent from any other boxes 

except box 1. Box 1 is therefore the only mandatory predecessor of 

box 5. 

This is also true for box 6. So long as boxes 1 and 2 have been 

loaded, box 6 can be placed onto the pallet. Only boxes 1 and 2 are 

the predecessors of box 6. 

The CPM (Critical Path Method [94]) network technique can be em

ployed to determine the placement sequence of boxes to be loaded. The 

network transformation is described in the following subsection. 

a. Network transformation The network consists of its nodes, 

represented by circles, which are used to indicate the assigned box 

numbers. A branch, represented by an arrow, connects two nodes and 

defines the predecessor and successor of two boxes. The node at the 

tail of the branch represents the predecessor, and the node at the head 

of the branch designates the successor. Three rules that must be fol

lowed in the network construction are: 
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Box number 

1 
2 
3 

4 
5 

6 
7 
8 
9 

10 

Box size Box type 

3 

1 
2 
2 
2 
2 
1 
1 
1 
1 

Figure 4.14. An example of a three-dimensional pallet pattern 
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• Each node must be identified with a unique integer number. 

• The node number of a successor must be greater than its 

predecessor. 

• Â node can have many predecessors or successors. A box 

can be placed onto the pallet only when all its predecessors 

have been loaded. 

The associated CPM network diagram of the previous example (see 

Figure 4.14) is given in Figure 4.15. 

When a node has no immediate predecessor, the associated box 

placement location on the pallet is available for loading the specific 

box. The immediate predecessors of a node are updated while the pal

letizing proceeds. For instance, as soon as box 1 is loaded onto the 

pallet, node 1 is no longer the predecessor of node 6. The immediate 

predecessor of node 6 is reduced to node 2 only. 

b. Chains of box types The placement location data for a pal

let pattern are individually stored on a disk as a data file. Each 

record of the input data file consists of the box type and the x-, y-, 

and z-coordinates of the box's placement location on the pallet. It 

is desirable to minimize the computer search time for a desired record, 

and give the computer complete control of robot movements. A chain 

technique has been used to accomplish these tasks. A chain refers to 

a group of records scattered within the files and interconnected by a 

sequence of pointers. Boxes of the same size form a unique chain. After 

a box type is determined at the robot's pick-up position, the computer 

then searches for an adequate box placement location from the associated 

chain. The search procedure is continuous until a desired record is 
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©—XD 
1 
2 
3 

4 

5 

6 
7 
8 
9 
10 

Node Immediate predecessor(s) 

None 
None 
None 
None 

1 
1,2 
3 
3 

4 
4 

Figure 4.15. The network precedence diagram 

found, or an end-of-chaln indicator Is detected. Without the chains, 

the computer has to search In the entire data file from the first 

record, and probably to the last record to determine whether or not a 

desired record exists. 

To employ a chain, an indication is needed to show where the 

chain starts. The start addresses of chains can be stored in a matrix 

table. Consider again the previous example of Figure 4.14. The chains 

and pointers of the example are presented in Table 4.3. 

In Table 4.3, chain 1 (box type 1) starts at record 2. The 

pointer of record 2 gives a number of 7; thus, the second member of 

chain 1 is record 7, and record 7 links to record 8 through the pointer, 

and so on. A pointer of number 0 indicates the end of a chain. The 
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Table 4.3. Chains and pointer structure^ 

Record # Node # Box type Pointer 

1 1 3 

2 2 1 7\ 

3 3 2 4"Y\ 
4 4 2 5< \ 

5 5 2 6 < 1 

0'^ ! 6 6 2 

6 < 1 

0'^ ! 
7 7 1 8 < 
8 8 1 9 

9 9 1 10 < 

10 10 1 0-" 

Legend: Chain 1 

Chain 2 

Chain 3 — • — 

Chain address table: 

Chain # Box type Start record # 

1 1 (1 X 2 X 1) 2 

2 2 (2 X 2 X 2) 3 

3 3 (2 X 3 X 1) 1 

chain members of the three chains are given in sequence below. 

Chain 1; (T) ""(7) 4  ̂

Chain 2 : (T) 4^ HJ) 

Chain 3 : Q 

In this example, the initial maximum search times for a type 1 box are 

only 5, compared with 10 without using chains. 

The pointer of each chain must be updated while the palletizing 

proceeds. Consider the placement of a type 1 box. If box 7 (record 7) 
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is placed before box 2, then the pointer of record 2 must be changed to 

8, and record 7 is eliminated from chain 1. The maximum search times 

for a type 1 box in the subsequent process are then reduced to 4. Even

tually, the length of a chain will be reduced to zero. 

In case that box 2 is placed first on the pallet, the start record 

number of chain 1 in the chain address table (see Table 4.3) must be 

changed to 7. The membership of record 2 is then eliminated from chain 

1. The subsequent search for a type 1 box will then start from record 

7 until an available record or end-of-chain indicator is encountered. 

The start record number in the address table will be eventually updated 

to zero, which indicates no chain exists for the specific box type (i.e., 

no pallet space available), 

For a box to be loaded, its associated number of immediate pre

decessors must be zero. To simplify the data input requirements, only 

node numbers at the tail (predecessor) and head (successor) of every 

network branch are stored. The number of immediate predecessors and 

its updating for each node is carried out by a software program. This 

procedure can be explained using the previous example in Figure 4.14. 

The node numbers of every branch's tail and head (see Figure 4.15) are 

listed in Table 4.4. 

The node numbers in the "Tail (predecessor)" column of Table 4.4 

must be in nondecreasing order. However, the order in the "Head (suc

cessor)" column can be arbitrary. A total of seven branches exist in 

the network. By counting the occurrence frequency of each node number 
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T a b l e  4 . 4 .  T h e  t a i l s  a n d  h e a d s  o f  n e t w o r k  b r a n c h e s  

R e c o r d  / /  T a i l  ( p r e d e c e s s o r )  H e a d  ( s u c c e s s o r )  

1 1  5 
2 1 6 
3  2  6  

4  3  7  

5  3  8  

6  4  9  

7  4  1 0  

in the "Head" column of Table 4.4., the number of immediate predecessors 

can be determined. These are given in Table 4.5. 

Furthermore, to update the number of predecessors of each node, a 

predecessor address table is also generated. This address table stores 

each node's start record number shown in the "Tail" column of Table 4.4. 

Note that the first node number 3 appeared in the "Tail" column of Table 

4.4 is at record number 4. Likewise, the first node number 4 is at record 

number 6. The predecessor address table of this example is presented in 

Table 4.6. 

Table 4.5. Number of immediate predecessors 

Node number Number of predecessor(s) 

1 0 
2 0 
3 0 

4 0 

5 1 

6 2 
7 1 

8 1 
9 1 

10 1 
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Table 4.6. Predecessor address table 

Start record number 

Node number (refer to Table 4.4) 

1 1 

2 3 

3 4 

4 6 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

In Table 4.6, a start record address of zero indicates that its 

associated node number has no successors. No updating is necessary 

here. 

Consider the following example of updating the number of predeces

sors. Suppose that box number 3 (node 3) has been loaded with a 2 x 2 x 2 

(type 2) box. The updating procedure is as follows: 

First, the predecessor address table in Table 4.6 indicates that 

the start record address of node 3 is at record 4. Secondly, records 4 

and 5 in Table 4.4 indicate that the successors of node 3 are records 

7 and 8. Finally, the number of immediate predecessors of both nodes 

7 and 8 in Table 4.5 are decreased by 1, and changed to 0 and 0, re

spectively. Since the number of immediate predecessors of nodes 7 and 

8 are altered to zero, two 1x2x1 (type 1) boxes can now be loaded. 

In Appendix C, the BASIC program implementing the constructing of 

chains is given in statements 1960 to 2250. The updating of chain 
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structures corresponds to statements 3520 to 3670. The searching pro

cedure for an available placement location on the pallet is presented 

in statements 3330 to 3500. 

A summary of this data input procedure can be described as fol

lows: 

• Assign a unique integer number to every box placement 

location on a pallet. 

• Transform the placement relationships of boxes to a CPM 

network precedence diagram. 

• Input the following data: 

1) number of box types, number of nodes, number of 

branches 

2) node #, box type, x-coordinate, y-coordinate, z-

coordinate, orientation 

The total number of records in this category should 

equal the number of nodes specified in 1) 

Each record consists of the following attributes. 

node // ; node number assigned to network diagram 

box type : associated box type of the node number 

x-coordinate : x coordinate value of a box location 

on a pallet 

y-coordinate : y coordinate value of a box location 

on a pallet 

z-coordinate : z coordinate value of a box location 

on a pallet 

orientation : placement orientation of a box; 

do nothing if 0; 

roll the hand 90° if 1. 

It is assumed that boxes conveyed to the robotic 

palletizing cell follow a fixed orientation. 

3) tail of branch, head of a branch 

The total number of records in this category should 

equal the number of branches specified in 1). 
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2. Palletizing procedure 

A miniature robotic palletizing station has been constructed using 

the Rhino XR-2 robot, a conveyor, and a turntable. The system layout 

of this robotic palletizing cell is illustrated in Figure 4.16. 

Storage area Rhino XR-2 robot 

Box 

conveyor 

Work envelope 

Turntable 

Figure 4.16. System layout of the robotic palletizing cell 

The palletizing process proceeds, step by step, as follows: 

1. Move the robot arm until the gripper is right above the 

box at the pick-up position. 

2. Lower the robot and actuate the gripper to pick up the 

box. 

3. Raise the arm clear of the in-feeding conveyor, so 

that it is above the height of any obstruction. 

4. If a pallet space is available for the box, move the 

arm to the proper location above the pallet. Otherwise, 
move the box to the proper location above the box's 

associated storage area. 
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5. Lower the robot arm straight down so that it will not 

contact other loaded boxes. Release the gripper and place 

the box. 

6. Raise the arm to a height above any obstruction. 

7. For every off-line storage area, if the storage area is 

not empty and a pallet space is available for this specific 

box size, then remove one and only one box from the 

storage area and place it onto the pallet. This step is 

repeated until all storage areas are checked. 

8. Go to 1. 

Steps 1 through 8 are also defined as a palletizing cycle from 

pick-up to pick-up. The complete palletizing procedure is illustrated 

with a block flow diagram as shown in Figure 4.17. The following de

scriptions explain the operations of selected blocks. The block numbers 

refer to the numbers assigned to the blocks in Figure 4.17. Circles A 

and B presented in Figure 4.17 will be explained later. 

BLOCK 1: Initially, the arm is set to its hard home position 

through the manipulation of keyboard. 

BLOCK 2: The placement location data of a pallet pattern is input 

to the control program. The chain for every box type is also constructed 

as described in the previous section. 

Each pallet pattern is stored as a separate data file in the disk. 

The data are read into the computer memory only when they are needed. 

Therefore, the number of pallet patterns that can be stored are con

strained only by available space on the floppy disk. 

BLOCK 3: From experiments, the Rhino XR-2 robot must self-reset 

to the hard home position for every five palletizing cycles from pick-up 

to pick-up. 
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mi PALLET SPACI 

AVAILABLM^ 

yai no 

m I STORAGE ̂  

OVERFLOW? 

yai 

(9) PALLET FULL? no 

ICO TO BLOCK IS) 

(6) UPDATE CHAIN 

STATUS 

(71 PLACE BOX ONTO 

PALLET 

(3) SELF-RESET TO HOME 

111 SET ARM TO HOME 
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Figure 4.17. Block flow diagram of palletizing procedure 
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Figure 4.17. continued 
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BLOCK 5: In industrial applications, the automatic identification 

systems such as bar code readers and machine vision can be employed to 

identify the box sizes and signal the robot for proper operations. In 

this research, a random number generator is used to generate box types. 

No actual measurement of box sizes is carried out. However, the random 

number generator has been adequate to serve the purpose of simulating 

an automatic identification device. The algorithm used to generate 

random box types will be described in detail in Chapter V. 

BLOCKS 6, 7 and 8; The computer searches for a pallet space from 

the box's associated chain. If any member of the chain has zero number 

of predecessors, a pallet space is available for the box just picked up. 

The chain is then updated as described previously. 

BLOCKS 9 and 10: When a pallet is full, a fork-lift truck or a 

automatic transfer removes the full pallet and inserts a new empty 

pallet. The chain status must be restored if the same pallet pattern 

is to be used for the next pallet. For multi-pallet packing with a 

turntable, a lowest priority is assigned to the newly inserted pallet. 

The priority numbers are increased for those remaining pallets which 

are not completely loaded. Only one pallet pattern is required for the 

palletizing control program no matter how many simultaneously loaded 

pallets are on the turntable. Every pallet has exactly the same pallet 

pattern. It is retrievable by properly rotating the turntable. 

BLOCKS 11 and 12: Off-line storage areas are used for those boxes 

that cannot be immediately loaded as they arrive at the robot's pick-up 
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position. In case that the storage area overflows, the robot will stop 

its operations. The palletizing process will resume after the excess 

number of boxes in the storage area are manually removed to an accepta

ble level. 

BLOCK 14: Each storage area is of cubic shape, and stores only 

identical boxes. Only the x, y, z coordinates of the bottom rightmost 

corner (initial placement location) and the top leftmost corner (extreme 

placement location) of the storage area need to be known by the robot. 

Every new placement location can be obtained either by increasing the 

width or the length of the box from the coordinate of the previous 

placement location. When one extreme point along the x-axis is reached, 

the value of the y coordinate is increased by the box's width (or 

length, depending on the box's placement orientation). The x coordinate 

value is reset to its initial value. 

Once both x and y coordinates reach their extreme points, the value 

of the z coordinate is increased by the box's height. The value of the 

X and y coordinates are then reset to their initial values. This en

ables the storage process to continue with minimal computer memory re

quirements. 

When the x, y and z coordinates reach simultaneously their extreme 

points, an indication of storage overflow will be notified by beeping 

and flashing the information on the display. 

BLOCKS 15 through 24: After a box is picked up from the in-feed-

ing conveyor and placed either on the pallet or in the storage area. 
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the robot will remove one box from every storage area and place it onto 

the pallet so long as the storage area is not empty and a pallet space 

is available. Boxes are removed from storage areas according to LIFO 

(Last-in First-out) discipline. 

A BASIC program implementing the palletizing procedure is presented 

in Appendix C. This palletizing control program is further developed to 

manage two conditions of box size distributions. One is a known box 

size distribution. The other is an unknown box size distribution. They 

are discussed in the subsections that follow. 

a. Known distributions With a known distribution, it is as

sumed that the box size proportions and the length (total number of 

boxes) of a distribution run are known. The sequence of box sizes ar

riving at the robot cell is still random, but the total number of boxes 

of each size can be pre-determined. The number of boxes may be de

termined from customer orders or master production schedules. liJhenever 

the end of a box size distribution is detected by counting the total 

number of boxes loaded, the computer will switch the pallet pattern for 

a new distribution run. Circle A in Figure 4.17 carries out this task. 

When an end-of-distrlbution is detected, a new pallet pattern number 

will be determined and circle A routes back to BLOCK 2. A multi-pallet 

packing approach can be applied for the situation of known size distribu

tions. 

b. Unknown distributions With an unknown distribution, it is 

assumed that the Information of a box size distribution cannot be ob
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tained before palletizing starts. The total number of boxes of a 

distribution run cannot be pre-determined. Whenever a pallet is full, 

the computer will select the best "match" pallet pattern according to 

the boxes in the look-ahead queue (in-feeding conveyor). The multi-

pallet packing cannot be used for the situation of unknown size dis

tributions. Consider the following situation of applying the double-

pallet packing for unknown box size distributions. 

After the pallet of the higher priority is full, an empty pallet 

is inserted, and a new pallet pattern is selected for this empty pal

let according to the boxes on the in-feeding conveyor. Meanwhile, the 

pallet of the lower priority may have been loaded with some boxes. The 

new pallet pattern may not fit this partially loaded pallet. This 

pallet must use the original pallet pattern and wait for boxes of ap

propriate sizes to fill up the remaining space. It is possible that 

the remaining spaces may remain empty for a long period of time. This 

is because the box size distribution may have been changed since the 

pallet of the higher priority is full. Therefore, only single-pallet 

packing can be employed for the situation of unknown distributions. 

Both conditions of known and unknown distributions have been simu

lated. The simulation results will be discussed in Chapter V. 

3. "Match" selection 

For the situation of unknown size distributions, the procedure of 

selecting a best "match" pallet pattern according to the boxes in the 

look-ahead queue is described, step by step, as follows: 
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STEP 1: Use eq. (4.1) to determine the look-ahead queue-length. 

The equation is rewritten below. 

Q-1 Q 

Z V. < aV < S V, 
i=l ^ - i=l 1 

where = volume of 1^^ box in the queue; 

V = volume of a pallet; 

Q = last box in the queue; 

= total number of boxes in the observed queue. 

STEP 2: For boxes v^, v^, ..., v^, compute the frequency of each 

box size. Denote the frequency of box size i as FREQ(i). 

STEP 3: Calculate the cumulative deviation of box ratios. Assume 

a total of N pallet patterns are stored on the disk. 

For j = 1, 2, ..., N, compute 

DEV(j) = E |FREQ(i)/Q - NBOX(i,j)/TOTAL(j) | (4.9) 

i 

where | • ( gives the absolute value 

DEV(j) = cumulative deviations of box ratios for 

pallet pattern j 

NBOX(i,j) = the number of boxes of size i in pallet 

pattern j 

TOTAL(j) = E NBOX(i,j) 

i 
= total number of boxes in pallet pattern j 

FREQ(i)/Q = box ratio of size i in the look-ahead 

queue 

NBOX(i,j)/TOTAL(j) = box ratio of size i in pallet 

pattern j 
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STEP 4: The N stored pallet patterns are divided into three 

groups according to their associated cumulative deviations 

of box ratios. The first group consists of the pallet 

patterns that 

FREQ(i) = 0 and NBOX(i,j) > 0, for any i. 

The second group consists of the pallet patterns that 

FREQ(i) < NBOX(i,j), or 

FREQ(i) > 0 and NBOX(i,j) = 0, for any i. 

The remaining pallet patterns are in the third group. 

For every pallet pattern j in group 3, 

FREQ(i) > NBOX(i,j), for all box size i. 

This means that the total number of boxes in the look-ahead 

queue is sufficient to complete a full pallet load. Pallet 

patterns in group 2 cannot fill a full pallet load in this 

observed look-ahead queue. They have to wait for appro

priate box sizes after all boxes in this look-ahead queue 

are packed. When FREQ(i) = 0, the pallet patterns which 

have a nonzero number of size i boxes are separated from 

group 2. This prevents the computer selecting a pallet 

pattern that requests a specific box size which may not ar

rive at the robotic palletizing cell. 

Therefore, the pallet patterns in group 3 have the high

est priority; the ones in group 2 have the second priority; 

and the ones in group 1 have the lowest priority. 
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STEP 5: Select the pallet pattern whose cumulative deviation of 

box ratios is minimum in group 3. If no such pallet pat

tern exists in group 3, select the pallet pattern that has 

minimum cumulative deviation of box ratios in group 2. If 

no pallet patterns satisfy the requirements in both groups 

2 and 3, the pallet pattern has minimum cumulative devia

tion of box ratios is selected from group 3. 

The evaluation of this procedure's performance is carried out using simu

lation in Chapter V. 

This procedure is applied in the robotic palletizing program, shown 

as circle B in Figure 4.17 for the situation of unknown size distribu

tions. After circle B, the flow routes back to BLOCK 2 in Figure 4.17 

to read into placement location data of the new selected pallet pattern. 

A BASIC program implementing the dynamic determination of a best "match" 

pallet pattern is given in Appendix E (subroutine starting at line 7340). 

In addition, two complete robotic palletizing programs, one for known 

distributions and the other for unknown distributions, are presented in 

Appendixes D and E, respectively. 

To evaluate the feasibility and performance of the robotic palletiz

ing system, two simulations have been completed. One is for multi-pallet 

packing with up to four simultaneously loaded pallets. The other is for 

determining the best value of the look-ahead factor (a in eq. 4.1). Pal

letizing efficiencies of known and unknown distributions are also com

pared based on the two simulation results. They are the subjects of the 

following chapter. 
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V. THE PALLETIZING SIMULATION 

A. Introduction 

The developed simulation model can be used for design, procedural 

analysis and performance. In this research, two major simulation re

sults are presented. One is the simulation statistics of multi-pallet 

packing with a turntable. Single-, double-, triple-, and quadruple-

pallet packing have been evaluated. This refers to the simultaneous 

loading of one, two, three, and four pallets, respectively. The second 

set of simulation statistics are for palletizing with unknown box size 

distributions. Five different look-ahead factors, from 1 to 3 in incre

ments of 0.5, have been examined in this simulation. With single pallet 

packing, simulation results of both known and unknown box size distribu

tions are also collected. A"known" box size distribution means that the 

length of each distribution run and box proportion of each type is known 

by the palletizing software program. In contrast, an "unknown" distribu

tion means that all information cannot be pre-determined (refer to Chap

ter IV). This allows the performance of the dynamic selection procedure 

for the best "match" pallet pattern to be evaluated. 

The miniature physical simulator of the robotic palletizing cell as 

described in Chapter IV is employed to collect all required palletizing 

data. The physical simulator has served the following four purposes. 

• Demonstration of the robotic palletizing operations. 

• Verification of the validity of the simulation programs. 

• Collection of palletizing statistics. 
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• Evaluation of the feasibility and performance of the 

robotic palletizing system. 

B. Condition Setups 

This section describes the palletizing conditions for the simula

tion. These consist of box sizes, pallet size, the arrival pattern of 

boxes, box size distributions, length of a distribution run, box size 

sequence in a distribution, and sequence of distributions. 

1. Assumptions 

To simplify the simulation process, the following assumptions have 

been applied. 

• Boxes placed on the in-feeding conveyor follow a fixed orien

tation. The longest dimension of a box's length and width 

must be in the direction oriented along the conveyor's length 

axis. This may be also required in industrial applications 

since the robot should not need to make a series of orienta

tion moves when picking up a box. To minimize cycle time, 

boxes should be presented to the robot with consistent orien

tation and positioning [89]. This also helps simplify the 

system. 

• A random number generator, which randomly generates box sizes, 
is used to simulate the operation of a bar code reader. In 

industrial applications, the bar code reader or scanning de

vice can be employed to identify box sizes and signal the ro

bot for proper operations. 

• The capacity of off-line storage areas is infinite. This per
mits the collection of queue statistics without constraints 
of physical storage space in the miniature model. The simula
tion process will not be interrupted because of storage over
flow. Also, the maximum number of boxes ever stored in the 
storage area at a time can be also determined with this space 
relaxation. 

The simulation conducted in this research consists of the follow

ing four box sizes; 
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Size 1: 1" x 1" x 1", 

Size 2: 1" x 2" x 1", 

Size 3; 2" x 2" x 2", 

Size 4: 2" x 3" x 1". 

A 4" X 4" pallet is employed to load these boxes with a stacking height 

limit of 4 inches. 

It is assumed that boxes arrive at a rate such that they are al

ways available at the pick-up position when the robot is ready to pick 

up a box. 

2. Box size distributions 

Boxes arrive at the robot's pick-up position according to 20 various 

distributions of the combinations of the above four box sizes. The 20 

box size distributions (proportions) are listed in Table 5.1. 

The four box sizes are divided into thirds. The distributions range 

from 100% of one box size, 33.3% and 66.7% of two box sizes, to 33.3% 

of three box sizes. The 20 distributions in Table 5.1 represent all 

possible distribution combinations by dividing the four box sizes into 

thirds. These 20 distributions have been used by Fleming [33] for simu

lating the palletizing process with two-dimensional pallet patterns. 

The heuristic dynamic programming algorithm described previously 

in Chapter III is employed to solve for the pallet pattern for each of 

the 20 distributions. In this simulation, it has been determined that 

the box size proportions of a pallet pattern should be as close as 

possible to those shown in Table 5.1. The 20 pallet patterns are de-
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Table 5.1. 20 box size distributions 

Proportion of boxes 

Distribution 
number 

Size 1 
( 1 x 1 x 1 )  

Size 2 
( 1 x 2 x 1 )  

Size 3 

( 2 x 2 x 2 )  

Size 4 

( 2 x 3 x 1 )  

1 0 1/3 1/3 1/3 

2 0 1/3 2/3 0 

3 1/3 0 1/3 1/3 

4 0 2/3 1/3 0 

5 1/3 1/3 1/3 0 

6 0 2/3 0 1/3 

7 1/3 0 2/3 0 

8 1/3 1/3 0 1/3 

9 0 1/3 0 2/3 

10 0 0 1/3 2/3 

11 1/3 2/3 0 0 

12 0 0 0 1 

13 1/3 0 0 2/3 

14 0 0 1 0 

15 0 1 0 0 

16 0 0 2/3 1/3 

17 2/3 1/3 0 0 

18 1 0 0 0 

19 2/3 0 1/3 0 

20 2/3 0 0 1/3 
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temlned based on this criterion. Some pallet space must be sacrificed 

to obtain desired box size proportions. The heuristic dynamic program

ming procedure that determines the required number of boxes of each 

size of each distribution is presented in Appendix F. The associated 

pallet patterns and their precedence diagrams are presented in Appendix 

G. 

The determined numbers of boxes for each distribution are summarized 

in Table 5.2. The numbers shown in this table give the required number 

of boxes of each type for each pallet pattern. Each box size distribu

tion has its own associated pallet pattern. For instance, distribution 

1 uses pallet pattern 1 which consists of four 1x2x1 boxes, four 

2x2x2 boxes, and four 2x3x1 boxes. For a full pallet load, pat

tern 1 will have 12 boxes. 

3. Length of a distribution run 

Decision analysis based on the results of a simulation model normal

ly requires an estimate of the average simulation response. Steady-

state behavior of a system specifies that the probability mechanism de

scribing the variability is unchanging and is no longer affected by the 

starting condition. In this simulation, steady-state means that the 

quantities of each box size in the associated off-line storage area have 

achieved relatively stable levels. The length of a distribution run 

should be long enough so that the steady-state behavior can be observed. 

However, based on the preliminary simulation run using pallet patterns 

(distributions) 1 and 3, no steady-state has been observed even when 
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Table 5.2. Number of boxes used for 20 pallet patterns 

Number of boxes 

Distribution/ 

pallet pattern 

number 

Size 1 

( 1 x 1 x 1 )  

Size 2 

( 1 x 2 x 1 )  

Size 3 

( 2 x 2 x 2 )  

Size 4 

( 2 x 3 x 1 )  

Total # 

of boxes in 

pallet cube 

1 0 4 4 4 12 

2 0 4 7 0 11 

3 4 0 4 4 12 

4 0 10 5 0 15 

5 5 5 5 0 15 

6 0 12 0 6 18 

7 4 0 7 0 11 

8 7 7 0 7 21 

9 0 4 0 8 12 

10 0 0 2 4 6 

11 12 25 0 0 37 

12 0 0 0 8 8 

13 4 0 0 8 12 

14 0 0 8 0 8 

15 0 32 0 0 32 

16 0 0 4 2 6 

17 32 16 0 0 48 

18 64 0 0 0 64 

19 12 0 6 0 18 

20 16 0 0 8 24 
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the length of the distribution run is increased up to 1,200 boxes. 

Figure 5.1 illustrates the variation of 2" x 3" x 1" boxes (from dis

tribution 1) in the storage area. Notice that although no steady-state 

is found in Figure 5.1, there is a trend forming a cycle for every 200 

boxes placed. At the beginning of a cycle, the stored boxes in the 

storage area is about at the zero level. Then the quantities of boxes 

in the storage area increase and vary within the cycle. Finally, at 

the end of the cycle, the quantities of stored boxes again reach the 

z e r o  l e v e l .  T h i s  t r e n d  i s  a l s o  o b s e r v e d  f o r  b o x  s i z e s  1 x 1 x 1 ,  1 x 2  

X 1 and 2x2x2. The variations of stored boxes for these three box 

sizes are presented in Appendix H. 

In industrial applications, a loading sequence of 1,200 boxes is 

unrealistically long. Therefore, it was decided that each distribution 

run should consist of 200 boxes. There are 20 different distributions. 

A total of 4,000 boxes are therefore "loaded" in each simulation run. 

Since no steady-state level of stored boxes in storage areas is ob

served, the simulation starts with an empty system. That is, the four 

off-line storage areas are initially empty when a simulation run begins. 

4. Box size sequence in a distribution 

One of the purposes of the conducted simulation is to compare al

ternative system configurations, such as single- vs. multi-pallet pack

ing, to find which method best satisfies a given objective. The way a 

system is configured can be thought of as an independent variable. If 

the palletizing alternatives are to be correctly evaluated, all other 
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conditions under which the alternatives are investigated should be 

identical from experiment to experiment. The randomness of box size 

sequence in a distribution has a potential influence on the measure of 

palletizing behavior. Under this consideration, the box size sequence 

in each of 20 distributions are predetermined. The same sequence of box 

sizes are carried for all experiments in this simulation. 

A random number generator was used to generate the sequence of box 

sizes for each of the 20 distributions. To assure the box size pro

portions generated by the random number generator are exactly the same 

as those specified in Table 5.1, the following nonsequential distribu

tion sampling algorithm was applied [67]. 

Assume that box size sequence of distribution 1 is to be generated. 

The box size proportion of distribution 1 and the corresponding numbers 

of boxes out of a total of 200 boxes are: 

Number of Cumulative 
Box size Size number Proportion boxes boxes 

1 x 2  x 1  2  1 / 3  6 6  6 6  

2 x 2 x 2  3  1 / 3  6 7  1 3 3  
2 x 3 x 1  4  1 / 3  6 7  2 0 0  

Therefore, the random number generator must generate exactly 66, 67 and 

67 boxes for size numbers 2, 3 and 4, respectively. 

Consider an array named DIST of length 200 which contains the inte

gers 2, 3 and 4 according to the following locations. 

Contents of DIST at locations 1 through 66 = 2. 

Contents of DIST at locations 67 through 133 = 3. 
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Contents of DIST at location 134 through 200 = 4. 

location 

DIST contents 

Then, perform the following procedure. 

STEP 0: Let N = 200. 

STEP 1: Choose a random integer J in the range [1, N] (i.e., from 

1 to N, Inclusively), 

J = INT[RAN*N] + 1, 

where function INT returns a largest integer number no 

greater than the value in the brackets. RAN is any random 

number generator that gives a random value between 0 and 1, 

exclusively. 

STEP 2: Choose the contents of DIST(J) as the Nth sample value of 

the distribution. Replace the contents of DIST(J) by the 

contents of DIST(N). 

STEP 3; Let N=N-1. If N = 0, then terminate the procedure. 

Otherwise, go to STEP 1. 

The above process generates the desired number of boxes for each 

size, and randomly distributed sequence of box sizes. 

5. Permutation of 20 distributions 

It is desired to make the incoming box distribution transitions to 

the physical simulator change radically so that the response and feasi

bility of the robotic palletizing system can be examined. 

1 2 66 67 

• i t 

133 134 200 



www.manaraa.com

162 

The most severe demands on off-line storage space may occur at the 

transition point between the change of two different distributions. In 

this simulation, the worst-case permutation of the 20 distributions is 

applied in terms of the cumulative variations of box size proportions. 

The cumulative variations of box size proportions are defined as the 

cumulative differences of box size proportions between two adjacent 

distributions. For a worst-case permutation of distributions, the 

summation of the cumulative variations of box size proportions is the 

maximum among all possible orders of distributions. 

Table 5.3 presents one of the worst-case permutations of the 20 box 

distributions. The maximum difference of box size proportions between 

any two distributions is two (2). For distributions 1, 3, 5 and 8 (three 

box sizes, 1/3 proportion for each), the maximum difference of box size 

proportions between any of these four distributions and any other dis

tributions is 1 1/3. Therefore, the sequence of 20 box size distribu

tions in Table 5.3 gives the maximum cumulative variations of box size 

proportions. This is the order used in this simulation. 

6. Summary of condition setups 

All palletizing conditions used in the simulation are the same for 

both known and unknown box size distributions. The definition and pal

letizing procedures for known and unknown distributions have been de

scribed in detail in Chapter IV. The setups are summarized as follows: 

• Four box sizes used: 1" x 1" x 1" (size 1), 1" x 2" x 1" (size 

2), 2" X 2" X 2" (size 3) and 2" x 3" x 1" (size 4). 
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Table 5.3. Worst-case permutation of box distributions 

Box size 

Distribution 

number 

1 

1 x 1 x 1  

2 

1 x 2 x 1  

3 

2 x 2 x 2  
4 

2 x 3 x 1  

Cumulative 
variations 

1 0 1/3 1/3 1/3 -

18 1 0 0 0 2 

4 0 2/3 1/3 0 2 

13 1/3 0 0 2/3 2 

2 0 1/3 2/3 0 2 

3 1/3 0 1/3 1/3 1 1/3 

15 0 1 0 0 2 

19 2/3 0 1/3 0 2 

9 0 1/3 0 2/3 2 

7 1/3 0 2/3 0 2 

6 0 2/3 0 1/3 2 

5 1/3 1/3 1/3 0 1 1/3 

12 0 0 0 1 2 

17 2/3 1/3 0 0 2 

16 0 0 2/3 1/3 2 

11 1/3 2/3 0 0 2 

10 0 0 1/3 2/3 2 

8 1/3 1/3 0 1/3 1 1/3 

14 0 0 1 0 2 

20 2/3 0 0 1/3 2 

Total 36 
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• Pallet dimensions: 4" x 4" with a stacking height limit of 

4 inches. 

• Box arrival rate; always available on the in-feeding conveyor 

when the robot is ready to pick up a box. 

•Twenty different box size distributions (see Table 5.1). 

• Twenty associated pre-determined pallet patterns (see 

Appendix G). 

• Length of a distribution run: 200 boxes. 

•A total of 4,000 boxes for each simulation run. 

• Sequence of 20 box distributions; worst-case permutation (see 

Table 5.3). 

• Simulation starts with an empty system. 

• Simulation is terminated as soon as the placement of 4,000 

boxes is complete. 

•The layout; the system layout of the robotic palletizing cell 

used in this simulation is illustrated in Figure 5.2. This 

gives the detailed locations of four storage areas, the Rhino 

robot, the conveyor and the 4-pallet turntable. 

7. Collection of robot movement times 

From a preliminary simulation study, it was estimated that each 

simulation run of 4,000 boxes required about twenty-five hours. There 

are nine experiments^ conducted in this simulation. To simplify the 

process of data collection, the movement times of the Rhino robot are 

collected. When simulation starts, the Rhino robot is shut off and a 

built-in timer of the T1 Professional microcomputer is employed to 

These nine experiments are single-, double-, triple- and quadruple-

pallet packing for known distributions, and look-ahead factors of 1.0, 
1.5, 2.0, 2.5 and 3.0 for unknown box size distributions. 
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Figure 5.2. System layout of the physical simulator 

simulate the actual robot movement times. For example, assume that 

the robot movement from the pick-up position to the storage area re

quires 5 seconds. When the palletizing software program proceeds to 

this operation, the program will stop for 5 seconds. The process will 

resume after 5 second delay is reached. In this way, no human at

tendance was necessary for the entire palletizing simulation. 

The physical simulator of the robotic palletizing cell was used 

to collect all required movement times of the Rhino robot and the turn

table. At least two full pallets for each distribution were manually 
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observed to verify the validity of the pallet patterns and the logic 

flow of the palletizing process. Robot movement times were also col

lected during this observation using the built-in timer of the T1 micro

computer. To obtain accurate robot movement times, the palletizing 

operation was divided into eleven detailed motions. All movement times 

of the eleven motions are deterministic rather than probabilistic. These 

collected movement times were substituted for the actual robot movements 

in the simulation programs. Appendix I presents the eleven detailed 

motions and collected movement times. 

C. Evaluation Criteria 

The criteria used to evaluate the performance and feasibility of 

the robotic palletizing system are based on the queue statistics of 

stored boxes in the off-line storage areas, total palletizing time of 

4,000 boxes and robot operation times of moving boxes to and from the 

storage areas. All these statistics are collected for each of the 20 

distributions and the total simulation of 4,000 boxes. The built-in 

timer of the T1 microcomputer is used to collect all time dependent 

statistics while the simulation proceeds. This section describes how 

the statistical measures are defined and how they are derived. 

1. Loading statistics 

The loading criteria measure the total number of boxes loaded onto 

the pallet and the various palletizing times. They consist of the fol

lowing . 
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TOTAL BOXES LOADED; total number of boxes loaded onto the pallets. 

A counter is used to record this number. It is increased by one when

ever a box is placed onto the pallet either from the in-feeding conveyor 

or the storage area. 

TOTAL PALLETIZING TIME: total time required to complete the place

ment of 4,000 boxes (or 200 boxes of a distribution run) either on pal

lets or storage areas. This is obtained by subtracting the start time 

from the terminating time of a simulation run. 

AVERAGE CYCLE TIME; the average time required from pick-up to pick

up. A palletizing cycle is as follows; Pick up a box from the in-feeding 

conveyor, and place it onto a pallet, if possible. Otherwise, place it 

in the off-line storage area. Then try to remove one box from each 

storage area and place it onto the pallet. Finally, move the arm back 

to the pick-up position. 

The complete operation sequence of a palletizing cycle has been de

fined in section D.2 of Chapter IV. The average cycle time is obtained 

by dividing the total cumulative cycle times by the total number of 

cycles. 

TOTAL OPERATION TIME IN STORAGE: total process time spent moving 

boxes to and from the storage areas. The larger the operation time in 

the storage areas, the less efficient the palletizing process. An ideal 

palletizing operation will have zero operation time in the storage areas. 

This ideal palletizing time can be used as the standard to evaluate the 

performance of other palletizing alternatives. 
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An ideal cycle time is the following. The robot picks up a box 

from the pick-up position on the conveyor and directly places it onto 

a pallet. Then the robot moves back to the pick-up position. The total 

operation time in storage areas is computed by subtracting the cumulative 

ideal cycle times from the total palletizing time. 

2. Queues in storage areas 

The operating characteristics of the queues used [85,101] are applied 

to evaluate the performance of the robotic palletizing system. The oper

ating characteristics employed consist of the following. 

TOTAL BOXES GENERATED: total quantities of boxes of each size that 

have been present on the conveyor and been picked up by the robot. A 

counter for each box size is used to record this number. Ifhenever a box 

size is generated by the random number generator, the corresponding 

counter is increased by one. 

TOTAL ENTRIES; total number of boxes which enter a storage area 

over the duration of the simulation period. TOTAL ENTRIES is the value 

of a counter initialized by zero, and incremented by one whenever a box 

is placed into the storage area. 

ZERO ENTRIES: total number of boxes which can be immediately placed 

onto pallets after being picked up from the conveyor. These boxes spend 

zero residence time in the storage area. ZERO ENTRIES can be obtained 

fay subtracting TOTAL ENTRIES from TOTAL BOXES GENERATED. 

MAXH-IUM CONTENTS: largest quantities of boxes ever stored in a 

storage area at a time. This value can determine whether a storage area 
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is sufficient in size. It is desired to have the value of MAXIMUM CON

TENTS as small as possible so that the storage overflow will not occur 

during palletizing. A variable initialized by zero is used to record 

the number. Whenever the current number of boxes in the queue is larger 

than the one previously recorded, the value of the variable is updated. 

CURRENT CONTENTS; total number of boxes left in the storage area 

when the simulation is terminated. A counter is used to update this 

value. I-Jhen a box is placed into the storage area, the counter is in

creased by one. When a box is removed from the storage area, the counter 

is decreased by one. 

AVERAGE CONTENTS: average number of boxes residing in the storage 

area at any time. This value is determined as follows: 

Average contents = Z N'P(N), 

where N = queue length 

= number of boxes stored in the storage area 

— 0, 1, 2, ... 

P(N) = the probability that there are N boxes in the storage 

area 

total waiting times with queue length N 

total palletizing time 

AVERAGE WAITING TIME: average time that a box spends in the storage 

area. This value is determined as follows: 

Averag. .aitW tme = ^ ° 

Notice that the above expression includes the zero entries, the 
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boxes that can be immediately loaded onto pallets. 

The standard deviations of the number of boxes in the storage area 

over time, and the waiting time per box do not have contributed meaning 

for this research. They are not collected in the simulation. 

D. Simulation Results 

In this section, three major simulation results are discussed. 

The first is the simulation multi-pallet packing with known box size 

distributions. The second is the simulation of the dynamic selection 

for a best "match" pallet pattern with unknown box size distributions. 

The effect of alternate look-ahead factors is examined. The third set 

of simulation results compares the palletizing performance between known 

and unknown box distributions. 

Before discussing these three simulation results, the previously 

described worst-case permutation of the 20 distributions is evaluated. 

1. Worst-case permutation of distributions 

In Table 5.3, the worst-case permutation of 20 distributions is 

determined according to the maximum cumulative variations of box propor

tions. To ensure this distribution permutation places severe demands 

on storage space at the transition point between different distributions, 

the palletizing statistics of the worst-case permutation are compared 

with those of 30 random sequences of distributions. The 30 sequences of 

randomly generated distribution numbers are presented in Appendix J. 

Since each simulation run may require twenty-five hours, the robot move-
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ment times are set to zero, and only time independent statistics are 

collected. The statistics to be compared are; 

•Maximum contents: This gives the largest quantity of boxes 

ever stored in the storage area at a time. It can be used 

to determine the required storage space. Since the robot's 

work envelope is limited, a smaller value of maximum contents 

is desirable. Also, the most severe demands on box storage 

space may occur at the transition points between two adjacent 

distributions. The maximum contents statistic can be employed 

to observe whether there is any significant change of the de

mands on storage space. 

• Zero entries: This gives the total number of boxes which can 

be directly loaded onto pallets. A larger amount of zero 

entries indicates that less total operation times in storage 
areas may be required since the movements of moving the robot 

arm to and from storage areas are reduced. 

This simulation has used single-pallet packing with known box size 

distributions. The simulation results of the 30 random distribution 

sequences along with the worst-case permutations are presented in Tables 

5.4a and b. Table 5.4a shows the statistics of maximum contents, and 

Table 5.4b presents the statistics of zero entries. 

Scanning Table 5.4a, notice that the maximum contents in storage 

area 1 range from 12 to 15, which gives an average of 13.5, compared 

with 12 of the worst-case permutation. The maximum contents in storage 

area 2 consistently fall between 9 and 10, which gives an average of 9.77. 

This compares with 10 of the worst-case permutation. The maximum con

tents in storage area 4 are consistently between 25 and 26, which gives 

an average of 25.2. This compares with 25 of the worst-case permutation. 

The differences of maximum contents between the worst-case permutation 

and 30 random runs for storage areas 1, 2 and 4 are not significant. The 
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Table 5.4a. Comparison of maximum contents 

Maximum contents 

Storage area 

Run 1 2 3 4 

Worst-case 12 10 44 25 

1 12 10 27 25 

2 15 10 31 25 
3 12 10 22 25 

4 15 9 31 25 
5 15 10 37 26 

6 12 9 30 25 

7 13 10 27 25 

8 13 10 25 26 

9 15 10 32 26 

10 13 10 31 25 

11 12 10 42 25 

12 12 10 24 25 

13 13 10 37 26 

14 15 10 33 25 

15 12 10 32 25 

16 13 10 30 25 

17 15 10 32 25 

18 15 9 38 25 

19 12 9 23 26 

20 15 10 39 25 

21 13 9 37 26 

22 15 10 43 25 

23 15 10 37 25 

24 12 10 45 25 

25 13 10 34 25 

26 12 9 32 25 

27 15 9 25 25 

28 13 10 46 25 

29 15 10 43 25 

30 13 10 27 25 

Average of 
13.5 9.77 33.1 25.2 

30 runs 
9.77 
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Table 5.4b. Comparison of zero entries^ 

Zero entries Total 

Storage area zero 

Run 1 2 3 4 entries 

Worst-
840 903 487 791 3021 

case 

1 823 908 526 775 3032 

2 816 893 589 769 3067 

3 853 900 551 733 3037 

4 838 911 559 744 3052 

5 828 899 584 728 3039 

6 834 913 492 798 3037 

7 795 901 617 768 3081 

8 798 891 603 789 3081 

9 784 890 648 756 3078 

10 793 897 635 762 3087 

11 848 904 466 808 3026 

12 831 904 512 796 3043 

13 802 893 602 784 3081 

14 784 891 658 758 3091 

15 833 904 480 815 3032 

16 834 903 557 768 3062 

17 829 893 568 766 3056 

18 805 914 640 737 3096 

19 851 923 516 769 3059 

20 839 892 642 683 3056 

21 838 911 594 707 3050 

22 806 894 565 803 3068 

23 835 893 543 766 3037 

24 819 905 540 773 3037 

25 816 905 564 783 3068 

26 863 922 497 761 3043 

27 844 897 624 723 3088 

28 794 894 634 744 3069 

29 825 887 532 808 3052 

30 829 911 576 724 3040 

Ave. of 
822.9 901.4 570.4 763.2 3058.2 

30 runs 
822.9 

^Total number of boxes: 
size 1 = 995 size 3 = 1002 

size 2 = 999 size 4 = 1004. 



www.manaraa.com

174 

maximum contents of storage area 3 for the 30 random runs fall within 

the range from 24 to 46. This gives an average of 33.1 boxes, compared 

with 44 boxes of the worst-case permutation. The difference between 

33.1 and 44 boxes corresponds to 25% increments for the demands on 

storage area 3. Based on the criterion of maximum contents, the worst-

case permutation does place severe demands on the off-line storage 

space. 

In Table 5.4b, the total zero entries of the 30 random runs range 

from 3,026 to 3,096 out of a total of 4,000 boxes. This yields an aver

age of 3,058 boxes, compared with 3,021 boxes of the worst-case permu

tation. The total zero entries of all 30 random runs are consistently 

greater than those of the worst-case permutation. More operation time 

of moving the robot arm to and from the storage areas may be required 

for the worst-case permutation. Again, the worst-case permutation 

generates least efficient palletizing operations in terms of the number 

of directly loaded boxes. The worst-case permutation listed in Table 

5.3 does yield a significant distribution transition sequence for the 20 

box distributions. This sequence is thus used for the following simu

lations. 

2. Multi-pallet packing (known distributions) 

In this simulation, single-, double-, or triple-, and quadruple-

pallet packing have been carried out. This refers to simultaneous load

ing of one, two, three and four pallets, respectively. Known distribu

tions were applied. This means that the length of a distribution run 
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and the associated box proportion of each type can be determined before 

palletizing starts. Pallet patterns were changed only at the end of 

a distribution run and start of another new distribution run. 

Tables 5.5 and 5.6 show the palletizing statistics of the total 

simulation for single-, double-, triple-, and quadruple-pallet packing. 

These summarize the overall simulation results of 4,000 boxes for the 

four experiments. The detailed palletizing statistics of each indi

vidual distribution run are presented in Appendix K. 

Evaluation criteria of loading statistics and queues in storage 

areas are discussed separately in the subsections that follow. 

a. Results of loading statistics Table 5.5 summarizes the total 

simulation results of loading statistics. The total number of boxes 

loaded onto the pallets is 4,000 boxes at the end of the simulation 

for all four pallet packing procedures. 

Total palletizing time is reduced from 25.5 to 21.3 hours when the 

number of simultaneously loaded pallets increases from one to four. 

This corresponds to a 16.5% improvement in the total palletizing time. 

Furthermore, the total operation time that the robot moves to and from 

storage areas is reduced from 9.0, 5.7, 2.9 to 1.9 hours when the num

ber of pallets increases from 1, 2, 3 to 4, respectively. Quadruple-

pallet packing yields a 1.9-hour time in the storage area. This compares 

with 9 hours for the single-pallet packing. The difference of 7.1 hours 

represents 78.9% improvement in terms of the total operation time in 

storage areas. 
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Table 5.5. Loading statistics of multi-pallet packing 

Number of pallets 

Statistics 1 2 3 4 

Total boxes 

loaded 
4,000 4,000 4,000 4,000 

Total simulation 

time (hours) 
25.5 23.6 21.9 21.3 

% improvement - 7.5% 14.1% 16.5% 

Total operation 

time in storage (hr) 
9.0 5.7 2.9 1.9 

Average cycle 

time (seconds) 
22.9 21.2 19.7 19.2 

b. Results of queue statistics Tables 5. 6a through 5 .6d sum-

marize the simulation results of the queue statistics for off-line 

storage areas 1, 2, 3 and 4, respectively. Review of the data in these 

tables reveals that there is observable trend. Values of Average Con

tents, Average Waiting Time, Total Entries and Maximum Contents decrease 

and values of Zero Entries increase as the number of simultaneously 

loaded pallets increased. Storage area 3 shows the most dramatic change 

in statistical measures (see Table 5.6c). The average contents move 

from 7.19 boxes to only 0.05 boxes, and the average waiting time drops 

from 658.3 seconds to 3.8 seconds while the number of simultaneously 

loaded pallets increases from 1 to 4. The maximum contents of storage 

area 3 significantly drops from 44 boxes to only 5 boxes as the number 

of simultaneously loaded pallets increase. The improvements of maximum 
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Table 5.6a. Queue statistics of storage area 1 

Statistics Number of pallets 

(storage area 1) 1 2 3 4 

Average contents 0.42 0.22 0.22 0.15 

Average waiting time 

(seconds) 
38.5 18.6 17.3 11.9 

Total boxes generated 995 995 995 995 

Total entries 155 85 57 40 

Zero entries 
840 910 938 955 

Maximum contents 12 10 11 9 

Table 5.6b. Queue statistics of storage area 2 

Statistics Number of pallets 

(storage area 2) 1 2 3 4 

Average contents 0.16 0.08 0.06 0.05 

Average waiting time 

(seconds) 
14.4 6.4 5.0 3.9 

Total boxes generated 999 999 999 999 

Total entries 96 33 23 17 

Zero entries 903 966 976 982 

Maximum contents 10 9 8 7 
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Table 5.6c. Queue statistics of storage area 3 

Statistics Number of pallets 

(storage area 3) 1 2 3 4 

Average contents 7.19 2.65 0.25 0.05 

Average waiting time 

(seconds) 
658.3 225.0 19.9 3.8 

Total boxes generated 1002 1002 1002 1002 

Total entries 515 354 102 27 

Zero entries 487 648 900 975 

Maximum contents 44 20 9 5 

Table 5.6d. Queue statistics of storage area 4 

Statistics Number of pallets 

(storage area 4) 1 2 3 4 

Average contents 1.09 0.95 0.86 0.69 

Average waiting time 

(seconds) 100.1 80.3 67.6 53.1 

Total boxes generated 1004 1004 1004 1004 

Total entries 213 145 120 108 

Zero entries 791 859 884 896 

Maximum contents 25 23 21 19 
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.contents for storage areas 1, 2 and 4 are not as dramatic. 

Storage area 3 stores only boxes of size 2" x 2" x 2". The de

creasing demands on storage space mean that the maximum required volume 

of storage area 3 is reduced from 352 cubic inches to only 40 cubic 

inches. This is an important result because of the limited work envelope 

that can be accessed by the robot. This gives an 88.6% improvement for 

the maximum demands on storage area 3. Since the requirements of 

storage areas are reduced, the frequency of storage area overflows can 

be reduced. This reduces the requirements for human intervention. 

Consider the summation of zero entries of storage areas 1, 2, 3 

and 4. They are as shown below. 

Pallet packing Total zero entries % improvement 

Single 3021 

Double 3383 12.0% 

Triple 3698 22.4% 

Quadruple 3808 26.0% 

While the number of pallets increases from 1 to 4, the total zero 

entries increase from 3021 to 3808 boxes. This corresponds to up to 

26.0% improvements when compared with single-pallet packing. This in

dicates that less robot movements to and from storage areas are re

quired. The results of total operation time in storage areas (see Table 

5.5) reflect this improvement. 

Based on the results of the queue statistics, the quadruple-pallet 

packing is again the best palletizing procedure in terms of the demands 

on storage space. 
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Indeed, statistical measures are improved while the number of 

simultaneously loaded pallets increases. Multi-pallet packing approach 

results in high efficient palletizing procedure, which requires less 

total palletizing time to load a fixed number of boxes, and reduces non

productive robot movements to and from storage areas. Also, multi-

pallet packing requires less space of off-line storage areas. This 

turns out to be feasible to load boxes of many sizes with limited ro

bot work envelope. 

3. Look-ahead factors (unknown distributions) 

Recall that the look-ahead factor (a) in equation 4.1 determines 

how long the look-ahead queue should be in terms of box volumes. In 

this simulation, this parameter is varied from 1 to 3 in increments of 

0.5. This refers that box volumes in the look-ahead queue should be 

accumulated until they reach 1 to 3 times of a pallet's volume, respec

tively. 

Single-pallet packing with unknown distributions is applied here. 

An unknown distribution means that information on the length of a dis

tribution run and the associated box proportions is not available to 

the palletizing control program before palletizing starts. The worst-

case permutation of 20 box distributions are also employed; however, 

these data are assumed to be unknown to the robot. The procedure of dy

namic selection for a best match pallet pattern described in section 

D.2.b of Chapter IV is implemented in this simulation. This dynamic 

selection procedure is carried out whenever a pallet is full. 
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Tables 5.7 and 5.8 show the palletizing statistics for the total 

simulation with alternate look-ahead factors. These data summarize the 

overall simulation results of 4,000 boxes for each experiment. The 

detailed palletizing statistics of each individual distribution run are 

presented in Appendix K. 

Simulation results of loading and queue statistics for each storage 

area are separately discussed in the subsections that follow. 

a. Results of loading statistics Table 5.7 summarizes the 

loading statistics of five look-ahead factors, 1, 1.5, 2, 2.5 and 3. 

With the look-ahead factor of 3, there is a total of 3,985 out of 4,000 

boxes loaded onto the pallets at the end of the simulation. This gives 

the maximum number of boxes loaded to the pallets in the five experi

ments. With a look-ahead factor of 1.5, 3,981 boxes have been loaded 

to the pallets. The difference between a = 1.5 and a = 3 is only 4 

boxes. 

Total palletizing time, total operation time in storage areas, and 

total zero entries for look-ahead factors 2, 2.5 and 3 are almost iden

tical to one another. 

Only 3,942 boxes are loaded to the pallets when the look-ahead 

factor is set to 1. With a = 1, the total palletizing time, total oper

ation time in storage areas and total zero entries are better than 

those with a = 2, 2.5 and 3, but not as good as those with a = 1.5. 

With the look-ahead factor of 1.5, a minimum total palletizing 

time of 25.7 hours is achieved. This compares with 27.0 hours with 
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Table 5.7. Loading statistics of alternate look-ahead factors 

Look--ahead factor (a) 

Statistics 1 1.5 2 2.5 3 

Total boxes 

loaded 
3942 3981 3972 3972 3985 

Total simulation 

time (hrs) 
26.4 25.7 27.0 27.0 27.0 

Total operation 

time in storage (hrs) 
11.0 9.7 12.4 12.2 12.4 

Average cycle 

time (sec) 
23.8 23.2 24.3 24.3 24.3 

Total zero 

entries 
2778 2938 2672 2651 2631 

a = 3. This corresponds to 1.3 hours or 4.8% improvement. Ana value 

of 1.5 yielded the minimum total operation time in storage areas of 9.7 

hours. This compares with 12.4 hours with a = 3. This is a 21.7% 

improvement. Finally, the procedure with a = 1.5 generates the maximum 

number of total zero entries in all five experiments. This means that 

less robot movements to and from storage areas are required. 

Based on the performance of the loading statistics, the look-ahead 

factor of 1.5 generates most efficient palletizing procedure. 

b. Results of queue statistics Tables 5.8a through 5.8d sum

marize the queue statistics for storage areas 1, 2, 3 and 4, respective

ly. In the five experiments, average contents and average waiting time 

for the 1.5 look-ahead factor yield the best or the second best results 

for the four storage areas. With a = 1.5, the average contents of 
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Table 5.8a. Queue statistics of storage area 1 

Statistics Look-ahead factor (a) 

(storage area 1) 1 1.5 2 2.5 3 

Average contents 11.73 4.83 2.23 15.86 17.25 

Average waiting time 

(seconds) 
1121.3 450 218.0 1550.2 45.0 

Total boxes generated 995 995 995 995 995 

Total entries 464 433 232 606 403 

Zero entries 531 562 763 389 592 

Maximum contents 63 24 24 65 77 

Current contents 58 13 0 26 0 

Table 5.8b. Queue statistics of storage area 2 

Statistics Look-ahead factor (a) 

(storage area 2) 1 1.5 2 2.5 3 

Average contents 0.85 0.60 6.10 2.61 9.72 

Average waiting time 

(seconds) 
80.7 55.9 593.9 254.2 944.8 

Total boxes generated 999 999 999 999 999 

Total entries 196 208 574 271 573 

Zero entries 803 791 425 728 426 

Maximum contents 20 15 35 25 74 

Current contents 0 0 18 2 6 
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Table 5.8c. Queue statistics of storage area 3 

Statistics Look-ahead factor (a) 

(storage area 3) 1 1.5 2 2.5 3 

Average contents 0.88 0.21 0.03 0.53 0.43 

Average waiting time 

(seconds) 

84.3 19.4 3.1 51.9 41.9 

Total boxes generated 999 999 999 999 999 

Total entries 150 132 49 189 119 

Zero entries 849 867 950 810 880 

Maximum contents 22 7 5 15 15 

Current contents 0 6 0 0 9 

Table 5.8d. Queue statistics of storage area 4 

Statistics Look-ahead factor (a) 

(storage area 4) 1 1.5 2 2.5 3 

Average contents 2.00 0.78 2.72 1.40 0.66 

Average waiting time 
(seconds) 

188.9 71.9 262.6 135.3 64.1 

Total boxes generated 1007 1007 1007 1007 1007 

Total entries 412 289 473 283 274 

Zero entries 595 718 534 724 733 

Maximum contents 28 14 24 20 15 

Current contents 0 0 10 0 0 
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gtorags areas 2, 3 and 4 are only 0.6, 0*21 and 0.78 boxes, respective

ly. The average contents of storage area 1 are 4.83 boxes, compared with 

a best value of 2.23 boxes when a = 2. 

The overall averages of "average contents" and "average waiting 

time" for the four storage areas are listed in Table 5.9. In this ta

ble, the overall average of "average contents" equals 

, 4 
Y Z (average contents of storage area i). 

^ i=l 

For look-ahead factor of 1, the overall average of "average contents" 

is 

1 (11.73 + 0.85 + 0.88 + 2.00) = 3.86. 

Table 5.9. The overall average statistics 

Overall Look--ahead factor (a) 

average statistics 1 1.5 2 2.5 3 

Ave. "average 

contents" 
3.86 1.60 2.77 5.10 6.90 

Ave. "average 

waiting time" 

(seconds) 

368.8 149.3 269.4 497.9 273.9 

From the above table, notice that the look-ahead factor of 1.5 gives 

minimum overall averages of numbers of boxes residing in the storage 

areas and minimum waiting time per box in the storage area. These values 

are 1.60 boxes and 149.3 seconds, respectively. No values for the re
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maining look-ahead factors are even close to these two numbers. More

over, the look-ahead factor of 1.5 generates smallest numbers of maxi

mum contents for storage areas 1, 2 and 4. The maximum contents of 

storage area 3 is only 7 boxes. This compares with a "best" maximum 

contents value of 5 boxes when a = 2. The difference is only 2 boxes. 

Thus, the look-ahead factor of 1.5 gives the palletizing procedure that 

requires least space of off-line storage area. Based on the considera

tion of demands on storage space, the look-ahead factor of 1.5 gener

ates best palletizing procedure. 

From the overall comparison of palletizing efficiency and demands 

on storage space, the look-ahead factor of 1.5 generates the best load

ing procedure which requires least palletizing time to complete the 

placement of 4,000 boxes. It requires the least nonproductive robot 

movements to and from storage areas, and the least off-line storage 

space. Surprisingly, the larger look-ahead factors did not generate 

better palletizing performance. This makes the dynamic selection pro

cedure even more feasible and practical for industrial applications. 

Since the observed length of a look-ahead queue is only 1.5 times of a 

pallet volume, the length of most industrial conveyors may be sufficient 

to contain the boxes to be observed at a time. 

The good performance of the 1.5 look-ahead factor over other larger 

look-ahead factors may be explained by comparing the pallet patterns 

selected during the palletizing process. When a pallet is fully loaded, 

the pallet pattern is dynamically selected from the 20 different pallet 
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patterns stored on the disk. The pallet patterns selected for the first 

three distribution runs (distributions 1, 18 and 4) in the comparison 

of look-ahead factors 1.5 vs. 3 are shown in sequence in Table 5.10. 

From Table 5.10, the pallet patterns selected for both look-ahead 

factors 1.5 and 3 are almost identical except toward the end of each 

distribution run. For the second distribution run (distribution 18), 

three consecutive pallet pattern #18s are selected for a = 1.5. However, 

only two consecutive pallet pattern #18s are selected for a = 3. The 

second distribution run (distribution 18) generates 200 boxes of type 1 

(see Table 5.1). A full pallet load for pallet pattern 18 consists of 

64 boxes of type 1 (see Table 5.2). For a = 3, after 128 boxes of type 1 

are loaded to two pallet pattern #18s, there are 72 boxes left in dis

tribution 18 to be loaded. These 72 boxes consist of only 1.125 times 

of the pallet's volume (64 cu. in.). Since the look-ahead factor of 

3 is used, the boxes in distribution 4 (the third distribution run) must 

be included in the look-ahead queue until the cumulative box volumes reach 

3 times the pallet's volume. This forces the procedure to select the 

pallet pattern 5 early as opposed to pallet pattern #18. 

Therefore, the maximum contents of storage 1 are dramatically in

creased to 62 boxes for a = 3, compared with only 6 boxes for a = 1.5. 

This is because pallet pattern 5 cannot absorb type 1 boxes as quickly 

as pallet pattern 18. For a = 3, 156 out of a total of 200 boxes are 

loaded onto the pallets. At the end of the second distribution run, 

there are 62 boxes of type 1 residing in storage area 1. This result 
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Table 5.10. Pallet patterns selected for the first three distribution 

runs 

Distribution Distribution^ Pallet^ Pallet pattern selected 

run number loaded a = 1.5c a = 3 

1 1 1 

2 1 1 

3 1 1 

4 1 1 

5 1 1 

6 1 1 

1 1 7 1 1 

8 1 1 

9 1 1 

10 1 1 

11 2 1 

12 1 1 

13 1 1 

14 1 1 

15 1 3 

16 8 

1 18 18 

2 18 2 18 18 

3 18 5 

4 5 5 

^Distribution 1 is simulated first (the first distribution run), 

distribution 18 is the second, and so on. 

^For each distribution run, 200 boxes are generated. The "pallet 

loaded" column shows the first full pallet loaded, the second full 

pallet, and so on. 

'^For a = 1.5, the first "pallet loaded" uses pallet pattern #1, and 

the 11th "pallet loaded" uses pallet pattern #2, etc. 
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Table 5.10. continued 

Distribution 

run 

Distribution 

number 

Pallet 

loaded 

Pallet pattern selected 
a = 1.5 a = 3 

1 4 4 

2 4 4 

3 4 2 

4 2 4 

5 4 4 

3 4 6 4 4 

7 4 4 

8 4 4 

9 4 4 

10 4 4 

11 4 4 

12 4 4 

13 4 1 

14 8 9 

thus degrades the overall performance of the total simulation. The 

palletizing and queue statistics of distribution 18 for look-ahead fac

tors 1.5 and 3 are presented in Table 5.11. The resulting statistics 

for each Individual distribution run can also be found in Appendix K. 

4. Comparison of known and unknown box distributions 

With unknown distributions, it is assumed that the information of 

incoming box size proportions and length of a distribution run is com

pletely not available before palletizing starts. In section D.2.b of 

Chapter IV, the procedure of dynamically selecting a "best match" pal-
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Table 5.11. Palletizing and queue statistics of distribution 18 

Look-ahead factor 

Statistics a = 1.5 a = 3 

Total boxes generated 200 200 

Total boxes loaded 198 156 

Total palletizing time (sec) 3,483 3,620 

Operation time in storage (sec) 150 1,112 

For storage area 1: 

Average contents 0.08 7.5 
Average waiting time (sec) 1.5 135.8 

Maximum contents 6 62 

Total entries 6 64 

Zero entries 194 136 

Current contents 6 62 

let pattern according to the boxes in the look-ahead queue has been de

scribed. To evaluate the performance and responsive capability of this 

dynamic selection procedure, the palletizing statistics of the previous 

two simulation results are compared with each other. The simulation 

results of single-pallet packing with known box distributions are em

ployed as a basis of comparison. These compared with the simulation 

results for the look-ahead factor of 1.5 with unknown box distributions. 

These palletizing statistics are extracted from Tables 5.5 and 5.6a-d 

and Table 5.7 and 5.8a-d, respectively, and presented in Tables 5.12 

and 5.13a-d. 

Comparisons of the loading and the queue statistics are separately 

discussed in the following subsections. 
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Table 5.12. Comparison of loading statistics 

^^""-^^tuation 
Known Unknown^ % of 

Measures distribution distribution Difference difference 

Total boxes loaded 4,000 3,981 19 0.5% 

Total simulation 
25.5 25.7 0.2 0.8% 

time (hr) 
25.5 25.7 0.2 0.8% 

Total operation 

time in storage 9.0 9.7 0.7 7.8% 
(hr) 

Average cycle 

time (sec) 
22.9 23.2 0.3 1.3% 

Total zero 

entries 
3,021 2,938 83 2.7% 

^Look-ahead factor = 1.5. 

a. Comparison of loading statistics Table 5.12 summarizes the 

loading statistics of the known (single-pallet packing) and unknown (the 

look-ahead factor of 1.5) distributions. From Table 5.12, notice that 

the percentage differences of all statistical measures between known and 

unknown distributions range from 0.5% to a maximum of 7.8%. The total 

palletizing time for the known distributions is 25.5 hours, compared 

with 25.7 hours for the unknown distributions. The difference is only 

0.2 hours or 0.8%. The total operation time in storage area for the un

known distributions is slightly longer than the known distributions. 

This gives a difference of 0.7 hours or 7.8%. This indicates that the 

performance difference in terms of the loading statistics between known 

and unknown box size distributions is not significant. 
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Table 5.13a. Comparison of queue statistics (storage area 1) 

--..___^Situatlon 

Measures '— 

Known 

distribution 

Unknown 

distribution 

Average contents 0.42 4.83 

Average waiting time 

(seconds) 
38.5 450 

Total boxes generated 995 995 

Total entries 155 433 

Zero entries 840 562 

Maximum contents 12 24 

Current contents 0 13 

Table 5.13b. Comparison of queue statistics (storage area 2) 

^ Situation 

Measures 

Known 
distribution 

Unknown 

distribution 

Average contents 0.16 0.60 

Average waiting time 

(seconds) 
14.4 55.9 

Total boxes generated 999 999 

Total entries 96 208 

Zero entries 903 791 

Maximum contents 10 15 

Current contents 0 0 
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Table 5.13c. Comparison of queue statistics (storage area 3) 

Situation 

Measures '— 
Known 

distribution 

Unknown 

distribution 

Average contents 7.19 0.21 

Average waiting time 

(seconds) 
658.3 19.4 

Total boxes generated 1002 999 

Total entries 515 132 

Zero entries 487 867 

Maximum contents 44 7 

Current contents 0 6 

Table 5.13d. Comparison of queue statistics (storage area 4) 

Measures 

Known 

distribution 

Unknown 

distributions 

Average contents 1.1 0.78 

Average waiting time 
(seconds) 

100.1 71.9 

Total boxes generated 1004 1007 

Total entries 213 289 

Zero entries 791 718 

Maximum contents 25 14 

Current contents 0 0 
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Based on the loading statistics, the dynamic selection procedure 

for unkown distributions performed equally well as the pallet packing 

with known distributions. The dynamic selection procedure with a look-

ahead factor of 1.5 can yield a palletizing procedure that is equally 

efficient with those of known box size distributions. 

b. Comparison of queue statistics Tables 5.13a through 5.13d 

summarize the queue statistics of known (single-pallet packing) and un

known (the look-ahead factor of 1.5) distributions. There is an inter

esting trend in the queue statistics in Tables 5.13a-d. With known dis

tributions, the pallet packing process tends to minimize the demands on 

storage areas 1 and 2. The palletizing procedure with unknown distribu

tions tends to minimize the demands on storage areas 3 and 4. For storage 

area 1, the average contents and average waiting time for the known dis

tributions are 0.42 boxes and 38.5 seconds per box, compared with 4.83 

boxes and 450 seconds for the unknown distributions, respectively. In 

contrast, for storage 3, the average contents and average waiting time 

for the unknown distributions are only 0.21 boxes and 19.4 seconds per 

box, compared with 7.19 boxes and 658.3 seconds for the known distribu

tions, respectively. These differences are extremely significant. 

By examining all pallet patterns selected during the palletizing 

process for distribution 2, the reason for difference in queue sta

tistics of storage area 3 for known vs. unknown distributions becomes 

apparent. 

For known distributions, pallet pattern 2 is applied for the entire 
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distribution run of 200 boxes. For unknown distributions, pallet pat

terns are dynamically selected among the 20 pre-stored pallet patterns 

according to incoming box types. A full pallet load for pallet pattern 

2 comprises four type 2 (1x2x1) and seven type 3 (2x2x2) boxes 

(see Table 5.2). Also, the random number generator generates 66 boxes 

of type 2 (33.3%) and 134 boxes of type 3 (66.7%) for distribution 2 

(see Table 5.1). 

If pallet pattern 2 is used for the entire distribution run of 200 

boxes, the maximum number of full pallets loaded is equal to 

min{[-^], = 16. 

There are 16 full pallets, and each can be loaded with seven boxes of 

type 3. At the end of the distribution run, a partially loaded pallet 

may be placed with seven boxes of type 3. Therefore, at most 119 boxes 

of type 3 can be loaded onto the pallets. There are 134 boxes of type 3 

generated in distribution 2. At least 15 boxes must be placed in storage 

area 3 since no sufficient boxes of type 2 exist to complete the pallet 

load for pattern #2. This means that the maximum and current contents 

for storage area 3 are at least 15 if pallet pattern 2 is used for the 

entire distribution run. 

For unknown distributions, pallet patterns are dynamically selected 

according to incoming box types. Note that toward the end of the dis

tribution run, the procedure selects pallet pattern 14 (and pallet pat

terns 1 and 3). This is shown in Table 5.14. 
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Table 5.14. Pallet patterns selected for distribution 2 

Distribution 

number 

Pallet loaded 

(in sequence) 

Pallet pattern 

Known dist. 

selected 

Unknown dist. 

1 2 2 

2 2 2 

3 2 14 

4 2 2 

5 2 2 

6 2 2 

7 2 2 

2 8 2 2 

9 2 2 

10 2 2 

11 2 2 

12 2 2 

13 2 2 

14 2 2 

15 2 2 

16 2 2 

17 14 

18 2 

19 1 

20 3 
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A full pallet load for pattern #14 consists of eight type 3 boxes. 

Therefore, type 3 boxes picked up from the. infeedlng conveyor can be 

directly loaded onto the pallet pattern 14 without waiting for other 

type 2 boxes. This dynamic selection procedure for a "best match" pal

let pattern is therefore more efficient. 

The queue statistics for storage area 3 in the comparison of known 

vs. unknown distributions for distribution 2 are presented in Table 5.15. 

The queue statistics for other individual distribution runs are presented 

in Appendix K. For known distributions, the maximum contents of storage 

area 3 are 19 boxes. This compares with 7 boxes for unknown distribu

tions. At the end of the distribution run, 15 boxes ("current contents" 

in Table 5.15) of type 3 reside in storage are 3 for known distribu

tions. In contrast, there are only 2 boxes of type 3 left in storage 

Table 5.15. Queue statistics of storagë area 3 for distribution 2 

Statistics 
(storage area 3) 

Known 

distributions 

Unknown 
distributions 

Total boxes generated 134 134 

Average contents 8.0 1.9 

Average waiting time 

(seconds) 
291.2 44.2 

Maximum contents 19 7 

Total entries 78 49 

Zero entries 56 85 

Current entries 15 2 
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area 3 for the unknown distribution situation. Therefore, the maximum 

contents keeps accumulating in the subsequent distribution runs for 

known distributions. 

It is difficult to determine which palletizing procedure is more 

desirable in terras of the demands on storage areas. The maximum con

tents, which determine required space in off-line storage areas, are 

used as the criterion for the final decision. The maximum contents and 

their corresponding required space in cubic inches are summarized in 

Table 5.16. 

Table 5.16. Maximum contents and required storage space 

Maximum contents Space (cu. in.) 

Storage 

(volume/box) 

Known 

dist. 

Unknown 

dist. 

Known 

dist. 

Unknown 

dist. 

Storage 1 

( 1 x 1 x 1 )  
12 24 12 24 

Storage 2 

( 1 x 2 x 1 )  
10 15 20 30 

Storage 3 

( 2 x 2 x 2 )  
44 7 352 56 

Storage 4 

( 2 x 3 x 1 )  
25 14 150 84 

Total 91 60 534 194 
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Again, the palletizing procedure for known box size distributions 

favors the maximum contents of storage areas 1 and 2. In contrast, the 

palletizing procedure for the unknown distributions generates smaller 

maximum contents requirements for storage areas 3 and 4, especially for 

storage area 3. The procedure for the unknown distributions dramatical

ly drops the maximum contents of storage area 3 from 44 to only 7 boxes. 

Storage areas 1, 2, 3 and 4 store boxes of sizes 1" x 1" x 1", 1" x 

2" X 1", 2" X 2" X 2" and 2" x 3" x 1". This refers to 1, 2, 8 and 6 

cubic inches per box, respectively. The total maximum contents of known 

and unknown distributions are 91 and 60 boxes, respectively. In terms 

of total maximum contents, the palletizing procedure for unknown dis

tributions is better than the procedure for known distributions. In 

addition, the total required storage spaces for known and unknown dis

tributions are 524 and 194 cubic inches, respectively. In terms of total 

required storage space, the palletizing procedure for unknown distribu

tions is better. Based on the queue statistics, the palletizing proce

dure for unknown box size distribution places less demand on off-line 

storage space. 

From the overall comparisons of the loading and the queue statis

tics, the dynamic selection procedure for a "best match" pallet pat

tern performed as well as the pallet loading process for known distribu

tions. It performed even better than the palletizing procedure for 

known distributions in terms of demands on storage space. Since this 

dynamic selection procedure can perform the palletizing procedure as if 
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the box size distributions are known, it is feasible to apply it for the 

situation in which box size proportions and length of a distribution run 

are not determinable before the palletizing starts. 

5. Summary 

The objectives of this simulation have been to evaluate the feasi

bility and performance of the robotic palletizing system, examine the 

procedure of multi-pallet packing, determine the best look-ahead factor 

for the unknown distribution situation, and evaluate the dynamic selec

tion procedure for a "best match" pallet pattern. 

With multi-pallet packing, more boxes can be directly loaded onto 

the pallets, and nonproductive palletizing movements to and from storage 

areas can be minimized. The palletizing efficiency is gradually in

creased, and demands on storage areas are continuously reduced as the 

number of simultaneously loaded pallet increases. 

The observed look-ahead queue length in terms of box volume has 

been found to be the best when it is 1.5 times of the pallet's volume. 

With a look-ahead factor of 1.5, the dynamic selection procedure for a 

"best match" pallet pattern performs most efficient palletizing opera

tions and requires least space in off-line storage areas. The dynamic 

selection procedure for unknown distributions performed as well as the 

single-pallet packing with known distributions. 

With the integration of dynamic pallet patterns and multi-pallet 

packing systems, it has been found that the robotic palletizing system 

generates efficient loading operations, and makes the demands on off

line storage space that are at feasible levels. 
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This palletizing simulation has employed a miniature physical 

simulator. All developed palletizing softwares and systems are direct

ly extendable to full-size equipment for actual industrial applications. 
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VI. CONCLUSIONS 

The developed mixed 0-1 integer programming algorithm is an exact 

procedure to solve the three-dimensional pallet loading problem. It 

generates the required numbers for each type of box, and the xyz-coor-

dinate placement location for every box on the pallet. The heuristic 

dynamic programming procedure generates a good solution with less compu

tation time. No human intervention is necessary for an optimal pallet 

pattern. These two algorithms have eliminated the requirements of find

ing an optimal solution from millions of possible combinations. 

It has been reported that one of Nabisco Biscuit Group's highrise 

storage centers saves $2 million a year in freight cost alone by ship

ping 10-15% more merchandise per truckload [98]. Since the algorithm 

will maximize the use of pallet space, total number of required pallets 

will be reduced and truckload box capacity could be improved. 

Use of industrial robots for palletizing releases people from 

tedious and fatiguing work. It helps increase productivity, reduce 

human packing errors, save labor and prevent accidents. Most important, 

robot palletization provides flexibility; the ability to accommodate 

frequent changes of sophisticated pallet patterns without changing 

equipment. Due to the use of automatic palletizing system, one of 

Campbell Soup Company's plants obtained annual savings of over $500,000 

in labor costs and 40% better throughput [35]. 

Based on the simulation results, the designed robotic palletizing 

procedure has performed efficiently for the pallet loading with multiple 



www.manaraa.com

203 

box sizes. With or without advanced information of box proportions, 

pallet patterns can be dynamically altered according to the incoming 

box distributions. The developed mathematical algorithms and robotic 

palletizing systems provide efficiency and flexibility for both ware

housing and manufacturing industries involving complex pallet packing 

requirements. Mixed, as opposed to identical, cartons have been ad

dressed in this research. This is a significant extension to existing 

automated systems. 



www.manaraa.com

204 

VII. BIBLIOGRAPHY 

1. Abalr, D. W. "Modern Solutions to Old Problems-Palletizing with 

Industrial Robots." Proceedings of Robots 8; Applications for 
Today. Vol. 1. Robotics International of SME, Detroit, Michigan, 

June 1984. 

2. Adamowicz, M. and A. Albano. "A Two-Stage Solution of the Cutting-

Stock Problem." In Information Processing 71. New York: North-

Holland, 1972. 

3. Adamowicz, M. and A. Albano. "A Solution of the Rectangular Cutting-

Stock Problem." IEEE Transactions on Systems, Man, and Cybernetics, 

SMC-6, No. 4 (1976), 302-310. 

4. Albano, A. and R. Orsini. "A Heuristic Solution of the Rectangular 

Cutting-Stock Problem." The Computer Journal, 23, No. 4 (1980), 338-

343. 

5. Albano, A. and G. Sapuppo. "Optimal Allocation of Two-Dimensional 

Irregular Shapes Using Heuristic Search Methods." IEEE Transactions 

on System, Man, and Cybernetics, SMC-10, No. 5 (1980), 242-248. 

6. Baker, B. S., D. J. Brown and H. P. Katseff. "A 5/4 Algorithm for 

Two-Dimensional Packing." Journal of Algorithms, 2, No. 4 (1981), 
348-368. 

7. Barnes, F. W. "Packing the Maximum Number of m x n Tiles in a 

Large p x q Rectangle." Discrete Mathematics, 26, No. 2 (1979), 

93-100. 

8. Basin, S. L. "Generalized Fibonacci Sequences and Squared Rec

tangles." American Mathematical Monthly, 70, No. 4 (1963), 372-

379. 

9. Beasley, J. E. "Algorithms for Unconstrained Two-Dimensional 

Guillotine Cutting." Journal of the Operational Research Society, 

36, No. 4 (1985), 297-306. 

10. Beasley, J, E. "An Algorithm for the Two-Dimensional Assortment 

Problem." European Journal of Operational Research, 19, No. 2 

(1985), 253-261. 

11. Beasley, J. E. "An Exact Two-Dimensional Non-Guillotine Cutting 
Tree Search Procedure." Operations Research, 33, No. 1 (1985), 

49-64. 



www.manaraa.com

205 

12. Beasley, J. E. "Bounds for Two-Dimensional Cutting." Journal of 

the Operational Research Society, 36, No. 1 (1985), 71-74. 

13. Biro, M. and E. Boros. "Network Flows and Non-Guillotine Cutting 

Patterns." European Journal of Operational Research, 16, No. 2 

(1984), 215-221. 

14. Blschoff, E. and W. B. Dowsland. "An Application of the Micro to 

Product Design and Distribution." Journal of the Operational 

Research Society, 33, No. 3 (1982), 271-280. 

15. Brown, A. R. Optimum Packing and Depletion. New York: American 

Elsevier, 1971. 

16. Brown, D. J. "An Improved BL Lower Bound." Information Processing 

Letters. 11, No. 1 (1980), 37-39. 

17. Brualdi, R. A. and T. H. Foregger. "Packing Boxes with Harmonic 

Bricks." Journal of Combinatorial Theory. 17, No. 2 (1974), 81-

114. 

18. Carpenter, H. and W. B. Dowsland. "Practical Considerations of 

the Pallet-Loading Problem." Journal of the Operational Research 

Society. 36, No. 6 (1985), 489-497. 

19. Cheng, M. H. R. and A. W. Pila. "Maximized Utilization of Surface 

Areas with Defects by the Dynamic Programming Approach." ISA 

Transactions. 17, No. 4 (1978), 61-69. 

20. Christofides, N. and C. Whitlock. "An Algorithm for Two-Dimensional 
Cutting Problems." Operations Research, 25, No. 1 (1977), 30-44. 

21. Chung, F. R. K., M. R. Garey and D. S. Johnson. "On Packing Two-

Dimension Bins." SIAM Journal on Algebraic and Discrete Methods, 

11, No. 1 (1980), 37-39. 

22. Chung, F. R. K., E. N. Gilbert, and R. L. Graham. "Tiling Rec

tangles with Rectangles." Mathematics Magazine, 55, No. 10 (1979), 

286-291. 

23. Coffman, E. G., Jr., M. R. Garey, D. S. Johnson and R. E. Tarjan. 

"Performance Bounds for Level-Oriented Two-Dimensional Packing 

Algorithms." SIAM Journal on Computing, 19, No. 4 (1980), 808-826. 

24. Cooper, M. W. and K. Farhangian. "A Dynamic Programming Algorithm 

for Multiple-Choice Constraints." Computers and Mathematics with 

Applications. 10, No. 3 (1984), 279-282. 



www.manaraa.com

206 

25. Coté, G. and M. A. Laughton. "Large-Scale Mixed Integer Programming: 

Benders-Type Heuristics." European Journal of Operational Research. 

16, No. 3 (1984), 327-333. 

26. Cotter, S. M. and B. G. Batchelor. "Visual Monitoring of Palletizing 

and Packing." Proceedings of the 3rd International Conference on 
Robot Vision and Sensory Controls, Cambridge, Massachusetts, November 

1983. 

27. Davis, R. E., D. A. Kendrick and M. Weitzman. "A Branch-and-Bound 

Algorithm for Zero-One Mixed Integer Programming Problems." Opera

tions Research, 19, No. 4 (1971), 1036-1044. 

28. Dowsland, K. A. "Determining an Upper Bound for a Class of Rec

tangular Problems." Computers and Operations Research. 12, No. 2 

(1985), 201-205. 

29. Dowsland, K. A. "The Three-Dimensional Pallet Chart: An Analysis 

of the Factors Affecting the Set of Feasible Layouts for a Class 

of Two-Dimensional Packing Problems." Journal of the Operational 

Research Society. 35, No. 10 (1984), 895-905. 

30. Dowsland, W. B. "Two and Three Dimensional Packing Problems and 

Solution Methods." New Zealand Operational Research, 13, No. 1 

(1985), 1-18. 

31. Farley, A. "Trim-Loss Pattern Rearrangement and Its Relevance to 
the Flat-Glass Industry." European Journal of Operational Research. 

14, No. 4 (1983), 386-392. 

32. Farley, A. "A Note on Modifying a Two-Dimensional Trim-Loss 

Algorithm to Deal with Cutting Restrictions." European Journal 

of Operational Research. 14, No. 4 (1983), 393-395. 

33. Fleming, J. R. "The Development and Implementation of a Pallet 

Loading Algorithm with a Physical Robotic Model." M.S. Thesis. 

Iowa State University, Ames, Iowa, 1986. 

34. Fleming, J. R., E. M. Malstrom and H. D. Meeks. "A Robotic Pallet-

Loading Algorithm for Dynamic Carton Distributions." Proceedings 

of the 7th International Conference on Automation in Warehousing. 

San Francisco, California, December 1986. 

35. "Flexible Palletizing Cuts Costs, Improves Service." Modern 

Materials Handling. 41, No. 2 (1986), 71-73. 



www.manaraa.com

207 

36. Garey, M. R. and D. S. Johnson. "Approximation Algorithms for 
Bin Packing Problems: A Survey." In Analysis and Design of 

Algorithms in Combinatorial Optimization. Ed. G. Ausiello and M. 

Lucertine. CISM Courses and Lectures No. 266. International 

Center for Mechanical Sciences, Italy, 1981. 

37. Garey, M. R. and D. S. Johnson. Computer and Intractability. 

New York: W. H. Freeman, 1979. 

38. George, J. A. and D. F. Robinson. "A Heuristic for Packing Boxes 

into a Container." Computers and Operations Research, 7, No. 3 

(1980), 147-156. 

39. Gilmore, P. C. and R. E. Gomory. "A Linear Programming Approach 

to the Cutting-Stock Problem." Operations Research, 9, No. 6 

(1961), 849-859. 

40. Gilmore, P. C. and R. E. Gomory. "Multistage Cutting Stock 

Problems for Two and More Dimensions." Operations Research, 13, 

No. 1 (1965), 94-120. 

41. Gilmore, P. C. and R. E. Gomory. "The Theory and Computation of 

Knapsack Function." Operations Research, 14, No. 6 (1966), 1045-
1074. 

42. Golan, I. "Performance Bounds for Orthogonal Oriented Two-Dimen-

sional Packing Algorithms." SIAM Journal on Computing, 10, No. 3 
(1981), 571-582. 

43. Golden, B. L. "Approaches to the Cutting Stock Problem." AIIE 

Transactions. 8, No. 2 (1976), 265-274. 

44. Goto, T. and K. Takeyasu. "Compact Packaging by Robot with Tactile 

Sensors." Proceedings of the 2nd International Symposium on 

Industrial Robots. IIT Research Institute, Chicago, Illinois, May 

1972. 

45. Grab, E. "Robot Palletizing Center (RPC)." Proceedings of the 

14th International Symposium on Industrial Robots, and 7th Inter

national Conference on Industrial Robot Technology, Gothenburg, 

Sweden, October 1984. 

46. Graham, R. L. "Fault-Free Tilings of Rectangles." In The Mathe

matical Gardner. Ed. D. A. Klarner. Belmont, California; Wads-

worth International, 1981. 



www.manaraa.com

208 

47. Gupta, A. D. "Operations Research Models for Design of Palletisa
tion System." Journal of Institution of Engineers (India), Mechan

ical Engineering Division, 57, Pt. ME 4 (1977), 183-185. 

48. Gupta, 0. K. and A. Ravlndran. "Branch and Bound Experiments In 

Convex Nonlinear Integer Programming." Management Science, 31, 
No. 12 (1985), 1533-1546. 

49. Haessler, R. W. "A Note on Computational Modifications to the 

Gllmore-Gomory Cutting Stock Algorithm." Operations Research, 
28, No. 4 (1980), 1001-1005. 

50. Hahn, S. G. "On the Optimal Cutting of Defective Sheets." Opera

tions Research, 16, No. 6 (1968), 1100-1115. 

51. Halms, M. J. and H. Freeman. "A Multistage Solution of the 

Template-Layout Problem." IEEE Transactions on Systems Science 

and Cybernetics. SSC-6, No. 2 (1970), 145-151. 

52. Healy, V. C., Jr. "Multiple Choice Programming." Operations 
Research, 12, No. 1 (1964), 122-138. 

53. Herz, J. C. "Recursive Computational Procedure for Two-Dimenslonal 

Stock Cutting." IBM Journal of Research and Development, 16, No. 5 
(1972), 462-469. 

54. Hllbert, D. and P. Vortrag. Mathematlsche Problem; Problem 18. 

Nachr. Gesellsch. Wiss. Gottingen, Mathem.-Physik. Klasse, 1900. 

55. Hlllier, F. S. and G. J. Lleberman. Operations Research. San 

Francisco: Holden-Day Inc., 1974. 

56. Hinxman, A. I. "The Trim-Loss and Assortment Problems: A Survey." 
European Journal of Operational Research, 5, No. 1 (1980), 8-18. 

57. Hodgson, T. J. "A Combined Approach to the Pallet Loading Problem." 

HE Transactions. 14, No. 3 (1982), 175-182. 

58. Hodgson, T. J., D. S. Hughes and L. A. Martin-Vega. "A Note on a 

Combined Approach to the Pallet Loading Problem." HE Transactions, 

15, No. 3 (1983), 268-271. 

59. Hoffman, D. G. "Packing Problems and Inequalities." In The 

Mathematical Gardner. Ed. D. A. Klarner. Belmont, California; 

Wadsworth International, 1981. 

60. Israni, S. and J. Sanders. "Two-Dimenslonal Cutting Stock Problem 

Research: A Review and a New Rectangular Layout Algorithm." Journal 

of Manufacturing Systems. 1, No. 2 (1982), 169-182. 



www.manaraa.com

209 

61. Jeroslow, R. G. and J. K. Lowe. "Experimental Results on the New 

Techniques for Integer Programming Formulations." Journal of 

Operations Research Society, 36, No. 5 (1985), 393-403. 

62. Kershner, R. B. "On Paving the Plane." American Mathematical 

Monthly, 75, No. 8 (1968), 839-844. 

63. Kochenberger, G. A. and V. H. Richard. "A Simple, All Primal 
Branch and Bound Approach to Pure and Mixed Integer Binary Problems." 

Operations Research Letters, 1, No. 5 (1982), 182-185. 

64. Kulick, A. "Interlocking Pallet Pattern Simulation Program." In

dustrial Engineering. 14, No. 9 (1982), 22-24. 

65. Lane, A. H. and A. G. Doig. "An Automatic Method of Solving Dis

crete Programming Problems." Econometrica, 28, No. 3 (1960), 497-

520. 

66. Lindkvist, R. G. T. Handbook of Materials Handling. West Sussex, 

England: Ellis Horwood Limited, 1985. 

67. Marasinghe, M. G. Statistical Applications of Digital Computers. 

Supplementary Notes for Statistics 480. Department of Statistics, 

Iowa State University, Ames, Iowa, Fall 1984. 

68. Martin, R. K. and L. Schrage. "Subset Coefficient Reduction Cuts 

for 0/1 Mixed-Integer Programming." Operations Research, 33, No. 
3 (1985), 505-526. 

69. Martin, R. K., D. J. Sweeney and M. E. Doherty. "The Reduced 

Cost Branch and Bound Algorithm for Mixed Integer Programming." 

Computers and Operations Research, 12, No. 2 (1985), 139-149. 

70. Mathematical Programming System Extended (MPSX), Mixed Integer 

Programming (MIP). Program Number 5734-XM4. New York: IBM World 

Trade Corporation, 1971. 

71. Miller, R. K. Robots in Industry. Madison, Georgia: SEAI Institute, 
Center for Robotic Applications, 1984. 

72. Mitra, G. "Investigation of Some Branch and Bound Strategies 

for the Solution of Mixed Integer Linear Programming." Mathe

matical Programming, 4, No. 2 (1973), 155-170. 

73. Ohtake, Y. and N. Nishida. "A Branch-and-Bound Algorithm for 

0-1 Parametric Mixed Integer Programming." Operations Research 

Letters, 4, No. 1 (1985), 41-45. 



www.manaraa.com

210 

74. Page, E. "A Note on a Two-Dimensional Dynamic Programming Problem." 

Operational Research Quarterly, 26, No. 2 (1975), 321-324. 

75. "Palletizing and Unitizing: How Robots Stack Up." Modern Materials 

Handling. 39, No. 10 (1984), 59-62. 

76. Rehg, J. Introduction to Robotics; A System Approach. Englewood 

Cliffs, N.J.: Prentice-Hall, 1985. 

77. Roberts, S. A. "Application of Heuristic Techniques to the Cutting-

Stock Problem for Worktops." Journal of the Operational Research 

Society. 35, No. 5 (1984), 369-377. 

78. "Robot Picks, Counts, and Palletizes Parts." Modern Materials 

Handling. 39, No. 10 (1984), 64-65. 

79. Robotics Reference and Applications Manual; MiniMover-5. Mountain 

View, California; Microbot, Inc., 1981. 

80. "Robots; A Flexible Solution for Tough Unitizing Jobs." Material 

Handling Engineering. 38, No. 9 (1983), 36-40. 

81. Ruthedge, R. W. "A Simplex Method for Zero-One Mixed Integer Linear 

Programs." Journal of Mathematical Analysis and Applications. 18, 

No. 2 (1967), 377-390. 

82. Salzer, J. J. "Order Selection to Conveyors with Voice Encoding 

on Advanced Distribution Warehouse Incorporating a High Degree of 

Mechanisation and Automation." Proceedings of the 2nd International 

Conference on Automation in Warehousing, University of Keele, 

England, March 1977. 

83. Sandhu, H. S. Hands-On-Introduction to Robotics, The Manual for 

the XR-Series Robots. Champaign, Illinois: Rhino Robots, 1983. 

84. Schiwarov, N. St. and K. Iv. Yanakiev. "Mechanical Handling System 

for Automatic Quality Grading and Robotized Wall Tile Palletization." 

Proceedings of the 6th International Conference on Automation in 

Warehousing. Atlanta, Georgia, December 1983. 

85. Schriber, T. J. Simulation Using GPSS. New York: John Wiley & 

Sons, Inc., 1974. 

86. Shaphinpoor, M, "The Exact Inverse Kinematics Solutions for the 

Rhino XR-2 Robot Manipulator." Robotics Age. 7, No. 8 (1985), 6-14. 



www.manaraa.com

211a 

87. Smith, A. and P. de Cani. "An Algorithm to Optimize the Layout of 

Boxes in Pallet." Journal of the Operational Research Society, 31, 

No. 7 (1980), 573-578. 

88. The Specifications and Applications of Industrial Robots in Japan: 

1984. Tokyo: Japan Industrial Robot Association, 1984. 

89. Stauffer, R. N. "Palletizing/Depalletizing: Robots Make It Easy." 

Robotics Today, 6, No. 1 (1984), 43-46. 

90. Steudel, H. J. "The Right Pallet Cuts Costs." Industrial Engineer

ing. 9, No. 2 (1977), 14-18. 

91. Steudel, H. J. "Generating Pallet Loading Patterns: A Special 

Case of the Two-Dimensional Cutting Stock Problem." Management 

Science. 25, No. 10 (1979), 997-1004. 

92. Steudel, H. J. "Generating Pallet Loading Patterns with Considera
tions of Item Stacking on End and Side Surfaces." Journal of 

Manufacturing Systems. 3, No. 2 (1984), 135-143. 

93. Tanchoco, J. M. A. and M. H. Agee. "Plan Unit Loads to Interact 

with All Components of Warehouse System." Industrial Engineering, 

13, No. 6 (1981), 36-47. 

94. Thesen, A. Computer Methods in Operations Research. New York: 
Academic Press, 1978. 

95. Tsai, D. M. The Use of a Robotic Manipulator to Unitize Pallet 

Loads in a Warehouse Distribution System. M.S. Thesis. Iowa 

State University, Ames, Iowa, 1984. 

96. Tsai, D. M., E. M. Malstrom and H. D. Meeks. "Robotic Unitization 

of Pallet Loads." Proceedings of the Fall Industrial Engineering 

Conference, Institute of Industrial Engineers, Chicago, Illinois, 

December 1985. 

97. Tsai, D. M., E. M. Malstrom and H. D. Meeks. "Modeling and Analy

sis of a Robotic Palletizing Cell." Working Paper #86444, Engineer

ing Research Institute, Iowa State University, Ames, Iowa, May, 

1986. 

98. "Updating Your Distribution? Update Your Material Handling System 

First." Material Handling Engineering, 39, No. 4 (1984), 46-52. 

99. Wang, P. Y. "Two Algorithms for Constrained Two-Dimensional Cutting 

Stock Problems." Operations Research, 31, No. 3 (1983), 573-586. 



www.manaraa.com

211b 

100. "What's New in Palletizers." Modern Materials Handling, 40, No. 3 

(1985), 80-82. 

101. White, J. A., J. W. Schmidt and G. K. Bennett. Analysis of 

Queueing Systems. New York: Academic Press, 1975. 



www.manaraa.com

212 

VIII. ACKNOWLEDGMENTS 

I wish to express my gratitude to Dr. Eric M. Malstrom for pro

viding and guiding this research. With his support and encouragement, 

the prolonged research for five years has been so interesting that the 

time is but a span. I also would like to express my appreciation to Dr. 

Way Kuo for his invaluable assistance both in academic and in private. 

My thanks are extended to the members of my Program of Study Committee, 

Dr. William H. Brockman, Dr. John C. Even, Jr., Dr. Howard D. Meeks, 

Dr. Terry A. Smay and Dr. Stephen B. Vardeman for their helpful advise. 

My, doctoral study was partially supported by the Firestone Tire & Rubber 

Company (Des Moines Plant) through a research project for which Dr. Kuo 

was the principal investigator. 

I would like to dedicate this dissertation to my parents for their 

love and continuous support throughout my graduate study. My study in 

the U.S. has been a wonderful experience. The harvest has been bounti

ful; not only academically but also spiritually. Last of all, I extend 

my deepest gratitude to my sisters, Shing-Dan and Shing-Fan, and brother, 

Du-Yan. With their spiritual support, although the flesh is ten thousand 

miles away from home, the mind is closer to one another than ever. 



www.manaraa.com

213 

IX. APPENDIX A. PROGRAM LISTING 

FOR MIXED 0-1 INTEGER PROGRAl-MING 
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This program for mixed 0-1 integer programming is designed to solve 

general linear programming problems of which continuous and binary vari

ables are involved. This program uses two-phase Simplex method to solve 

for continuous solution, and Kochenberger's branch-and-bound procedure 

[63] is then carried out to obtain the binary integer solution. 

Definition of program variables: 

MO = maximum number of constraints 

NO = maximum number of variables plus the number of > = 

constraints 

NOS = maximum number of subproblems 

In this program MO, NO and NOS are set to 40, 50 and 45, 

respectively. To increase the problem size, the follow

ing arrays must be adjusted. 

M$(MO), N$(NO), A(MO), B(MO,NO), C(NO), P(NO), R(MO), T(NO), 

U(MO), X(NO), Z(NO), OPTV(NO), FV(NOS), CSTAR(NO), 

DT(NOS,NO) 
N$(j) = the name of variable j assigned by the user 

M$(i) = the name of constraint i 
C(j) = coefficient of variable j in the objective function 

B(i,j) = coefficient of variable j in constraint i 

R(i) = right-hand-side value of constraint i 

X(j) = shadow price in phase I; X(j) in phase II represents 

the solution value of variable j 

Z(j) = shadow price of variable j in phase II 

T(j) = coded names of nonbasic variables 

A(i) = coded names of basic variables 

DT(i,j) = 6 value of binary variable j in subproblem i; 
6 = -1, 0, or 1. 

CSTAR(j) =the new coefficient of binary variable j in the objective 

function 

FV(i) = function value of subproblem i 

U(i) = dual values 

OPTV(j) = current best solution value of variable j 

MAXZ = current best function value 

PC = counter for cumulative number of subproblems 

BN = branching node number 

BVAR = branching variable number 

BNY = number of binary variables 
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10 ' >'« 'V JV >V VF I'< A JV >V )'C A )'( JV >'« IV >V >'c A A * )V A >'c >V )'« >'« A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

20 '  ' 

30 ' Purpose - mixed 0-1 integer programming 
40 ' 
50 ' Algorithm - Kochenberger's branch-and-bound 
60 ' procedure 

70 ' 
80 ' Parameters -
90 ' 
100 ' MO ! number of constraints 
110 ' NO : number of variables plus the number of 
120 ' >= constraints 
130 ' NOS : number of subproblems 
140 ' MAXZ : initial lower bound of the obj. fn. 
150 ' 
l60 ' Input -
170 ' 
l80 ' > problem title 
190 ' > MAX or MIN 
200 ' > number of variables 
210 ' > obj. fn. coef., variable name 
220 ' (input binary vars. before continuous vars.) 
230 ' > number of constraints 
240 ' > name of constraint, type (>=<), RHS value 
250 ' (RHS values should >= 0) 
260 ' > number of nonzero elements on LHS of all 
270 ' constraints 
280 ' > nonzero coef., constraint name, var. name 
290 ' 
300 ' A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

310 ' 

320 DEFINT D 
330 DIM M$ (40) , N$ (50) , A (40) , B (40,50) , C (50) 
340 DIM P(50) ,R(40) ,T(50) ,U(40) ,X(50) ,Z(50) 
350 DIM 0PTV(50) ,FV(45) ,CSTAR(50) ,DT(45,50) 
360 ' 
370 CLOSE #1 : OPEN "MIX.DAT" FOR INPUT AS #1 
380 CLOSE #2 : OPEN "S0LUTI0N.DAT" FOR OUTPUT AS #2 
390 INPUT "NUMBER OF BINARY VARIABLES; ",BNY 
400 ' 
410 ' set up parameters 
420 ' 
430 M0=40 : N0=50 ; V7=0 : NOS=45 
440 SMALL».00001 : LARGE=>.9999 
450 MAXZ=-1000 : BIGM=1000 
460 PC=1 : BN=1 
470 FOR 1=1 TO NO: 0PTV(l)=0 : NEXT I 
480 FOR 1 = 1 TO NOS : FV(l)=0 
490 FOR J=1 TO BNY ; DT(l,J)=0 
500 NEXT J ; NEXT I 
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510 PRINT #2,"START TIME: "jDATE$,TIME$ 
520 ' 
530 ' read input data 
540 ' 
550 PRINT "READING DATA.. 
560 INPUT#1,T$ : PRINT #2,"TITLE ":T$ : ' read title 
570 INPUT#],Q$ : ' read MAX or MIN 
580 INPUT#!,N : ' read number of variable 
590 FOR J=1 TO N ; INPUT#1,C (J),N$(J) s NEXT J 
600 INPUT#!,M : ' read number of constraints 
6!0 N3=0 
620 FOR 1=1 TO M 
630 INPUT#!,M$(l) ,C$,R(I) : U{l)=0 
640 IF C$="<=" THEN U(l)=l 
650 IF [$="='" THEN U(l)=2 
660 IF [$=">=" THEN U(l)=3 
670 IF U(l) >0 THEN 700 
680 PRINT "AAA ERROR IN THE ABOVE TYPE OF CONSTRAINT AAA" 
690 V7=V7+1 : GOTO 710 
700 IF U(l)=3 THEN N3=N3+1 
710 NEXT I 
720 IF N+N3 <=N0 THEN 750 
730 PRINT "NUMBER OF VARIABLES EXCEEDS ",N0 
740 V7=V7+1 : GOTO 820 
750 FOR J=1 TO N : T(J)=J : NEXT J 
760 L=0 
770 FOR l=! TO M 
780 FOR J=! TO N+N3 : B(l,J)=0 : NEXT J 
790 IF U (I) 0 3 THEN 810 
800 L=L+1 : B(I,N+L)=-1 : C (N+L) =0 ; N$ (N+L) =M$ (I) : T(N+L)=N+I 
810 NEXT I 
820 INPUT#!,K1 : ' read total number of nonzero LHS coefs. 
830 FOR L=1 TO K! 
840 INPUT#!,VO,C$,D$ 
850 FOR 1=1 TO M 
860 IF C$=M$(I) THEN 900 

870 NEXT I 
880 V7=V7+! 
890 PRINT C$;" ERROR, NOT CONSISTENT" 
900 FOR J=1 TO N 
910 IF D$=N$(J) THEN 940 
920 NEXT J 
930 V7=V7+! : PRINT D$ERROR, NOT CONSISTENT" : GOTO 950 
940 IF V7=0 THEN 8(1,J)=VO 
950 NEXT L 
960 IF V7=0 THEN 1020 
970 PRINT : PRINT V?ERRORS DETECTED, EXECUTION TERMINATED" 
980 STOP 
990 ' 
1000 ' set vector Z(j) to contain coefs. of objective fn. 
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1010 '  
1020 N=N+N3 : FOR J=1 TO N : Z(J)=C(J) 
1030 IF Q$="MIN" THEN Z(J)=-C(J) 
1040 NEXT J 
1050 FOR J=1 TO N 
1060 X(J)=0 
1070 FOR 1=1 TO M 
1080 IF U(l)=l THEN 1100 
logo X(J)=X(J)-B(I,J) 
1100 NEXT I 
1110 NEXT J 
1120 Ng^o 

1130 FOR 1=1 TO M 
1140 A(l)=-I 
1150 IF U(l)=1 THEN 1170 
1 160 N9=N9+1 : A(l)=-I-M 
1170 U(l)=0 
1180 NEXT I 
1190 FOR 1 = 1 TO N : CSTAR{I)=C{I) : NEXT I 
1200 ' 
1210 ' call LP subroutine 
1220 ' 
1230 GOSUB 2080 
1240 ' 
1250 ' start branch-and-bound procedure 
1260 ' 
1270 C0=0 ; FOR 1=1 TO M : J=A()) 
1280 IF J <= 0 THEN 1300 
1290 CO=CO+C(J) ARd) 
1300 NEXT I 
1310 FV(BN)=CO : ' LP function value 
1320 FOR J=1 TO N : X (J)=0 : NEXT J 

1330 ' 
1340 ' LP continuous solution 
1350 ' 
1360 FOR 1=1 TO M 
1370 K=A(I) 
1380 IF K>0 AND K<=N-N3 THEN X(K)=R(I) 
1390 NEXT I 
1395 GOTO 1650 
1400 ' 
1410 IF PC=N0S THEN 2030 : ' PC is the counter for subproblems 
1420 IF PC=0 THEN 2040 ; ' list is empty, deliver solution 
1430 ' 

1440 ' select branching node 
1450 ' (the node with highest bound for max. problems) 
1460 ' 
1470 BN=1 : ' BN is the branching node 
1480 IF PC=1 THEN 1540 
1490 BN=1 : TMAX=FV(1) 
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1500 FOR 1=2 TO PC 
1510 IF TMAX >= FV(I) THEN 1530 
1520 TMAX=FV(I) : BN=I 
1530 NEXT I 
1540 FOR J=1 TO BNY 
1550 CSTAR (J) "DT (BN,J)'"«BIGM+C (J) ; ' compute new obj . fn. coef . 
1560 NEXT J 
1570 FOR J=1 TO N 
1580 IF T ( J )  <=0 THEN P(J)=-0 ELSE P (J) =-CSTAR (T (J) ) 

1590 ' 
1600 ' perform sensitivity analysis for new obj. fn. coefs. 
1610 ' 
1620 FOR 1=1 TO M 
1630 IF A(l)>0 AND A(I)<=N-N3 THEN P (J) =P (J)+CSTAR (A ( I ) ) >VB ( I , J) 
1640 NEXT 1 : NEXT J : INDEX=2 : GOTO 2160 
1650 IF FV(BN) <= MAXZ THEN I8OO 
1660 IF BNY=0 GOTO 1730 
1670 FOR J=1 TO BNY 
1680 IF (X(J) > SMALL AND X (J) < LARGE) AND DT(BN,J) <> 0 THEN I8OO 
1690 NEXT J 
1700 FOR J=1 TO BNY 
1710 IF X(J) > SMALL AND X(J) < LARGE THEN i860 
1720 NEXT J 
1730 IF FV(BN) <= MAXZ THEN I8OO 
1740 MAXZ=FV (BN) : ' update the lower bound of the obj. fn. 
1750 FOR 1=1 TO N : OPTV(l)=X(l) : NEXT I 
1760 IF NBY=0 GOTO I8IO 
1770 ' 
1780 ' fathom (eliminate the subproblem from the list) 
1790 ' 
1800 FOR J=1 TO BNY : DT (BN,J)=0T (PC,J) : NEXT J 
1805 FV(BN)=FV(PC) 
1810 PC=PC-1 : GOTO 1410 
1820 ' 
1830 ' select branching variable 
l840 ' (most fractional integer variable) 
1850 ' 
i860 FOR J=1 TO BNY 
1870 IF X(J) > l-X(J) THEN X(J)=1-X(J) 
1880 NEXT J 
1885 BVAR=1 : TMAX=X(1) 
1890 IF BNY=1 THEN 1970 
1900 FOR J=2 TO BNY 
1910 IF TMAX > X(J) THEN 1930 
1920 TMAX=X(J) : BVAR=J 
1930 NEXT J 
1940 ' 
1950 ' partition (add new subproblems to the list) 
i960 ' 
1970 PC=PC+1 
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1980 FOR J=1 TO BNY : DT(PC,J)=0T (BN,J) : NEXT J 
1990 DT(BN,BVAR)=1 ; DT(PC.BVAR) =-l ; FV(PC) =FV(BN) : GOTO 1410 
2000 ' 
2010 ' deliver the optimal solution 
2020 ' 
2030 PRINT#2,"MAX. NUMBER OF SUBPROBLEMS ENCOUNTERED" 
2040 PRINT#2,"FUNCTION VALUE: ";MAXZ : PRINT#2,"VARIABLE","VALUE" 
2050 FOR 1 = 1 TO N-N3 : PRINT#2,N$(I),0PTV(I) : NEXT I 
2060 PRINT #2,"TERMINATING TIME; ";DATE$,TIME$ 
2070 END 
2080 ' 
2090 ' Simplex algorithm (two-phase method) 
2100 '  
2110 10=1 : INDEX=1 
2120 FOR J=1 TO N : P(J)=-Z(J) 
2130 FOR 1=1 TO M : P(J)=P(J)+U(I)AB(I,J) 
2140 NEXT I : NEXT J 
2150 ' 
2160 ' pivot column 
2170 ' 
2180 E9=-.0000001 : K9=0 
2190 IF 10=2 THEN 2210 
2200 IF N9 <= 0 THEN 3100 
2210 FOR J=1 TO N 
2220 IF T(J) < -M THEN 2310 
2230 IF 10=2 THEN 2280 
2240 IF X(J) >=E9 THEN 2310 
2250 K9=J 
2260 E9=X(J) 
2270 GOTO 2310 
2280 IF P(J) >=E9 THEN 2310 
2290 K9=J 
2300 E9=P(J) 
2310 NEXT J 
2320 IF K9 <= 0 THEN 308O 
2330 ' 
2340 ' pivot row 
2350 ' 
2360 K8=0 
2370 C9=E9 
2380 E9=1E+20 
2390 FOR 1=1 TO M 
2400 IF B(l,K9) <=0 THEN 2450 
2410 R9=R(I)/B(I ,K9) 
2420 IF R9 >= E9 THEN 2450 
2430 E9=R9 
2440 K8=I 
2450 NEXT I 
2460 IF K8 > 0 THEN 2530 
2470 PRINT 
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2480 PRINT#2,"AAa SOLUTION UNBOUNDED ***" 
2490 PRINT#2," " 
2500 STOP 
2520 ' 
2530 ' transform tableau 
2540 ' 
2550 V9=B(K8,K9) 
2560 FOR J=1 TO N 
2570 B(K8,J)=B(K8,J)/V9 
2580 NEXT J 
2590 R(K8)=R(K8)/V9 
2600 FOR 1=1 TO M 
2610 IF I=K8 THEN 2670 
2620 R(I)=R(I)-R(K8)>VB(I,K9) 
2630 FOR J=1 TO N 
2640 IF J=K9 THEN 266O 
2650 B(I,J)=B(I,J)-B(K8,J)'VB(I ,K9) 
2660 NEXT J 
2670 NEXT I 
2680 FOR 1=1 TO M 
2690 B(l ,K9)=-B(I ,K9)/V9 
2700 B(K8,K9) = 1/V9 
2710 NEXT I 
2730 ' 
2740 ' interchange basic and nonbasic variables 
2750 ' 
2760 R8=T(K9) 
2770 T(K9)=A(K8) 
2780 A(K8)=R8 
2790 E9=Z(K9) 
2800 Z(K9)=U(K8) 
2810 U(K8)=E9 
2820 IF T(K9) >= -M THEN 2840 
2830 N9=N9-1 
2840 IF 10=2 THEN 2930 
2850 S9=P(K9) 
2860 FOR J=1 TO N 
2870 P(J)=P(J)-S9AB(K8,J) 
2880 X(J)=X(J)-C9AB(K8,J) 
2890 NEXT J 
2900 P(K9)=-S9/V9 
2910 X(K9)=-C9/V9 
2920 GOTO 3000 
2930 FOR J=1 TO N 
2940 P(J)=P(J)-C9'<B(K8,J) 
2950 NEXT J 
2960 P(K9)=-C9/V9 
2970 ' 
2980 ' set very small elements of B(i,j) to zeros 
2990 ' 
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3000 FOR 1=1 TO M 
3010 FOR J=1 TO N 
3020 IF ABS(B(I,J)) > .000000,1 THEN 3040 
3030 B(l ,J)=0 
3040 NEXT J 
3050 NEXT I 
3060 GOTO 2180 
3070 ' 
3080 IF 10=2 AND INDEX=2 THEN 1270 
3090 IF 10=2 THEN 3160 
3100 10=2 

3110 IF N9 <= 0 THEN 2120 
3120 PRINT 
3130 PRINT#2," •>'<*•>'< SOLUTION INFEASIBLE AAA" 
3140 PRINT#2," — " 
3150 STOP 
3160 RETURN 
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X. APPENDIX B. PROGRAM LISTING 

FOR THE HEURISTIC DYNAMIC PROGRAMMING 
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This program employs the heuristic dynamic programming developed 

in this research to solve for a three-dimensional pallet problem. Two 

goals are involved in this program. The first goal is to maximize the 

utilization of a pallet cube. The second goal is to make the number of 

boxes of each type satisfy some user-specified number. If statements 

2140-2220 are not in effect, goal 1 has higher priority than goal 2. 

Otherwise, goal 2 is more important than goal 1. 

Definition of program variables: 

LB(i),WB(i),HB(i) = length, width and height of box type i, 

respectively 

AREA(i) = volume of box type i 

Fl(i,j,k) = previous maximum return function value; i,j,k are 

the length, width and height of an index pallet, 
respectively. (i,j,k) varies from (1,1,1) to 

(L,W,H), the dimensions of the pallet. 
F2(i,j,k) = current maximum return function value 

AVl(i,j,k,n) = previous allocation vector of box type n 
AV2(i,j,k,n) = current allocation vector of box type n 

UNIT(i,j) = the unit vector 
BA(i) = volume occupied by boxes for combination i (see 

Figure 3.11) 
RBOX(i,j) = allocation vector (box type j) for combination 

i 
RT(i) = box ratio of combination i 

NBOX(i) = desired number of boxes of type i 

TOTALl(i) = total number of boxes allocated for combination i 

WA(i) = sorted return function values in nonincreasing order 

AL(i) = allocation vector after sorting 

INDEX(i) = index number of sorted return function value; which 

stores the combination number that has i^h largest 

function value 

MAX(i) = current maximum return function value. If some 

allocation vector satisfies the selection criteria 

(Rules 1 to 4), then use MAX(l). Otherwise, use 

MAX(2). 

NCA(i,j) = current best solution of the allocation vector 
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20 ' '  

30 ' Purpose - dynamic programming procedure for three ' 
40 ' dimensional pallet loading problem ' 
50 ' 
60 ' Parameters- ' 
70 ' ' 
80 ' Fl(i,J,k) : previous maximum return function ' 
90 ' ' 
100 ' F2(i,j,k) : current maximum return function ' 
110 ' ' 
120 ' i,j,k are length, width and height ' 
130 ' ' 
140 ' AVl(i,j,k,n) : previous allocation vector ' 
150 ' ' 
160 ' AV2(l,j,k,n) ; current allocation vector ' 

170 '  
180 ' n is the the type number of box ' 
190 ' ' 
200 ' Revised date- April 22, 1987 ' 
2 1 0  '  '  
2 2 0  ' A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  

230 ' 
240 DEFINT A-N,P,Q,S-Y 
250 DIM LB (6) ,WB(6) ,HB(6) , AREA (6) , BA (7) ,RB0X(7,6) ,WA(7) ,UNIT(6,6) 
260 DIM F1(4,4,4) ,F2(4,4,4),AVI (4,4,4,6),AV2(4,4,4,6),T0TAL1 (7) 
270 DIM INDEX(7) ,RT(7),NB0X(6),AL(6),MAX(2),NCA(2,6),TYPE(6) 
280 ' 
290 ' input dimensions of pallet and boxes 
300 ' 
310 INPUT "ENTER NUMBER OF VARIOUS BOX SIZES: ",NOB 
320 J=1 : K=1 : BT=0 : Z0L=0 
330 INPUT "PALLET DIMENSIONS; (LENGTH,WIDTH,HEIGHT): ",LP,WP,HP 
340 IF K > NOB THEN GOTO 460 
350 PRINT : PRINT "»BOX TYPE: ";K 
360 INPUT "BOX DIMENSIONS (LENGTH,WIDTH,HEIGHT): ",LB (J),WB (J),HB(J) 
370 INPUT "DESIRED NUMBER ",NBOX(J) 
380 TYPE(J)=K : BT=BT+1 : TOTAL2=TOTAL2+NBOX(J) 
390 IF' LB (J) 0 WB(J) GOTO 410 
400 J=J+1 : K=K+1 ; GOTO 340 
410 BT=BT+1 : NBOX (J+l) =NB0X (J) ; LB (J+1) =WB (J) ; WB(J+1)=LB(J) 
420 HB(J+1)=HB(J) : TYPE (J+l) =K : J=J+2 : K=K+1 : GOTO 340 

430 ' 
440 ' initialize 
450 ' 
460 NBT=8T 
470 FOR 13=0 TO HP : FOR 12=0 TO WP : FOR 11=0 TO LP 
480 F1 (11,12,I3)=0 : F2 (I 1, I 2, I 3) =0 
490 FOR 14=1 TO NBT: AVI(I I,I 2,I 3,I 4)=0: AV2(I 1,I 2,I 3.1 4)=0: NEXT 14 
500 NEXT II: NEXT 12: NEXT 13 
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510 FOR 12=1 TO NBT: FOR 11=1 TO NBT 
520 UNlTd 1, I2)=0 
530 NEXT I 1 : NEXT 12 
540 FOR 13=1 TO NBT: UN IT(I 3,I 3)=1: NEXT 13 
550 FOR 13=1 TO NBT: AREA (I 3) =LB (I 3)''<WB (I 3)''«HB (I 3) : NEXT 13 
560 ' 
570 ' determine function values and allocation vectors 
580 ' of the first box type 
590 ' 
600 FOR 13=1 TO HB(1): FOR 12=1 TO WB(1): FOR 11 = 1 TO LB(1) 
610 FI(II,I2,I3)=0 : AVI (I I, 12, 13, 1)=0 
620 NEXT I 1 : NEXT 12 : NEXT 13 
630 FOR I3=HB(1) TO HP : NHB=I NT (I 3/HB (I) ) 
640 FOR I2=WB(1) TO WP : NWB=I NT (I 2/WB (1) ) 
650 FOR ll=LB(1) TO LP : NLB=I NT (I 1/LB (1) ) 
660 F1 (I1,I2,I3)=NLB»VNWB>VNHB>'CAREA(1) 
670 AVI (I1,I2,I3,1)=NLBANWBANHB 
680 NEXT I 1 : NEXT 12 : NEXT 13 
690 1=2 

700 IF NBT > 1 GOTO 740 
710 F2(LP,WP,HP)=F1(LP,WP,HP) : AV2 (LP,WP,HP,1) =AV1(LP,WP,HP,I) 
720 GOTO 2450 
730 ' 
740 ' enumerate all stages 
750 ' 
760 IF I > NBT GOTO 2450 
770 ' 
780 ' calculate fn. value given the index cube (ILX,IWX,IHX) 
790 ' 
800 FOR IHX=I TO HP : FOR IWX=1 TO WP : FOR ILX=1 TO LP 
810 IF ILX < LB (I) OR IWX < WB(I) OR IHX < HB(I) THEN GOTO 83O 
820 GOTO 860 
830 F2(ILX,IWX,IHX)=FI(ILX,IWX,IHX) : FOR 11=1 TO NBT 
840 AV2 (ILX,IWX,IHX,I1)=AV1 (ILX,IWX,IHX,I 1) : NEXT I 1 
850 GOTO 2360 
860 ' 
870 ' allocate a box at coordinate (JPL,JPW,JPH) 
880 ' 
890 M = ILX-LB(I): 12=IWX-WB (I) : I3=IHX-HB(I) 
900 ICOL=INT(lLX/2) : ICOW=I NT ( IWX/2) : ICOH=I NT ( IHX/2) 
910 IF II < I COL THEN ICOL=l1 
920 IF 12 < I COW THEN IC0W=I2 
930 IF 13 < ICOH THEN IC0H=I3 
940 MAX(1)=0 : MAX (2) =0 : KY=2 : OPTR=JOO 
950 FOR JPH=0 TO ICOH : FOR JPW=0 TO I COW : FOR JPL=0 TO I COL 
960 XL=LB(I) : XW=WB(I) ; XH=HB(I) 
970 SL=ILX-XL-JPL : SW=IWX-XW-JPW : SH=IHX-XH-JPH 
980 IF SL < 0 THEN SL=0 
990 IF SW < 0 THEN SW=0 
1000 IF SH < 0 THEN SH=0 



www.manaraa.com

226 

1010 '  

1020 ' calculate the function values 
1030 ' 
1040 ' fn. value of combination 1 
1050 B1=F2 (ILX,IWX.JPH): B2=F2(ILX,IWX,SH) 
lOéO B3=»F2 (JPL, IWX.XH) : B4=F2(SL, IWX.XH) 
1070 B5=F2(XL,JPW,XH) : B6=F2 (XL,SW,XH) 
1080 BA (I)=AREA (I)+B1+B2+B3+B4+B5+B6 
logo ' fn. value of combination 2 
1100 B3=F2(JPL,XW,XH) : B4=F2 (SL.XW.XH) 
1110 B5=F2 (ILX.JPW.XH) : B6=F2(ILX,SW,XH) 
1120 BA(2)=AREA (I)+B1+B2+B3+B4+B5+B6 
1130 ' fn. value of combination 3 
1140 B1=F2 (JPL,IWX,IHX); B2=F2(SL,IWX,IHX) 
1150 B3=F2(XL,JPW,IHX) : B4=F2(XL,SW,IHX) 
1160 B5=F2 (XL.XW.SH) : B6=>F2 (XL.XW, JPH) 
1170 BA(3)=AREA ( I)+B1+B2+B3+B4+B5+B6 
1180 ' fn. value of combination 4 
1190 B3=F2 (XL.JPW.XH) : B4=F2 (XL.SW.XH) 
1200 B5=F2(XL,IWX,SH) : B6=F2 (XL,IWX.JPH) 
1210 BA (4)=AREA ( I)+B1+B2+B3+B4+B5+B6 
1220 ' fn. value of combination 5 
1230 B1=F2(ILX,JPW,IHX): B2=F2(ILX,SW,IHX) 
1240 B3=F2 (JPL,XW,IHX) : B4=F2(SL,XW,IHX) 
1250 B5=F2 (XL.XW.SH) : B6=F2(XL.XW.JPH) 
1260 BA (5)=AREA ( I)+B1+B2+B3+B4+B5+B6 
1270 ' fn. value of combination 6 
1280 B3=F2(JPL,XW,XH) : B4=F2 (SL,XW,XH) 
1290 85=F2(ILX,XW,SH) : B6=>F2 (I LX.XW.JPH) 
1300 BA (6)=AREA ( I)+B1+B2+B3+B4+B5+B6 
1310 ' the previous best function value 
1320 BA(7)=F1 (ILX,IWX, IHX) 
1330 GOSUB 2560 
1340 ' 
1350 ' calculate the allocation vectors 
1360 ' 
1370 ' allocation vector of combination 1 
1380 FOR BT=1 TO NBT 
1390 B1=AV2(ILX,IWX,JPH,BT) : B2=AV2 (ILX,IWX,SH,BT) 
1400 83=AV2(JPL,IWX,XH,BT); B4=AV2 (SL,IWX,XH,BT): B5=AV2 (XL,JPW,XH,BT) 
1410 B6=AV2(XL,SW,XH,BT) : RBOX (1, BT) =UN IT ( I, BT)+BH-B2+B3+B4+B5+B6 
1420 NEXT BT 
1430 ' allocation vector of combination 2 
1440 FOR BT=1 TO NBT 
1450 B1=AV2 (ILX,IWX,JPH,BT) : B2=AV2 (ILX,IWX.SH,BT) 
1460 B3=AV2(JPL,XW,XH,BT): B4=AV2 (SL,XW,XH,BT): b5=AV2 (ILX,JPW,XH,BT) 
1470 B6=AV2 (ILX,SW.XH,BT): RBOX(2,BT)=UNIT(I,BT)+B1+B2+B3+B4+B5+B6 
1480 NEXT BT 
1490 ' allocation vector of combination 3 
1500 FOR BT=1 TO NBT 

(Figure 3.11a) 

(Figure 3.11b) 

(Figure 3.11c) 

(FI gure 3. lid) 

(F i gure 3. lie) 

(F i gure 3.1 If) 
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1 5 1 0  0 1 = A V 2 ( J P L , I W X , I H X . B T ) :  B 2 = A V 2 ( S L , I W X , I H X , B T )  
1 5 2 0  B 3 = » A V 2 ( X L , J P W , I H X , B T )  :  B 4 = A V 2 ( X L , S W , I H X , B T ) :  B 5 = A V 2  ( X L . X W . S H . B T )  
1 5 3 0  B 6 = A V 2  ( X L , X W , J P H , B T ) :  R B O X ( 3 , B T )  = U N I T ( I , B T )  + B 1 + B 2 + B 3 + B 4 + B 5 + 8 6  
1 5 4 0  N E X T  B T  
1 5 5 0  '  a l l o c a t i o n  v e c t o r  o f  c o m b i n a t i o n  4  
1 5 6 0  F O R  B T = 1  T O  N B T  
1 5 7 0  B 1 = A V 2  ( J P L , I W X , I H X . B T ) :  B 2 - A V 2 ( S L , I W X , I H X , B T )  
1 5 8 0  B 3 = A V 2 ( X L , J P W , X H , B T ) :  B 4 = A V 2  ( X L , S W , X H , B T ) :  B 5 = A V 2 ( X L , I W X , S H , B T )  
1 5 9 0  B 6 = A V 2  ( X L , I W X . J P H . B T ) :  R B O X ( 4 , B T ) « U N I T ( I , B T ) + B 1 + B 2 + B 3 + B 4 + B 5 + B 6  
1 6 0 0  N E X T  B T  
1 6 1 0  '  a l l o c a t i o n  v e c t o r  o f  c o m b i n a t i o n  5  
1 6 2 0  F O R  B T = 1  T O  N B T  
1 6 3 0  B 1 = A V 2 ( I L X , J P W , I H X , B T ) :  B 2 = A V 2 ( I L X . S W , I H X . B T )  
1 6 4 0  0 3 = A V 2  ( J P L . X W , I H X . B T ) :  B 4 = A V 2  ( S L , X W , I H X . B T ) :  B 5 = A V 2 ( X L , X W , S H , B T )  
1 6 5 0  B 6 = A V 2 ( X L , X W , J P H , B T )  :  R B O X ( 5 , B T )  = U N I T ( I , B T ) + B 1 + B 2 + B 3 + B 4 + B 5 + B 6  
1 6 6 0  N E X T  B T  
1 6 7 0  '  a l l o c a t i o n  v e c t o r  o f  c o m b i n a t i o n  6  
1 6 8 0  F O R  B T = 1  T O  N B T  
1 6 9 0  B 1 = A V 2 ( I L X , J P W , I H X , B T ) :  B 2 = A V 2  ( I L X . S W , I H X . B T )  
1 7 0 0  B 3 = A V 2  ( J P L , X W , X H , B T )  :  B 4 = A V 2  ( S L , X W , X H , B T ) :  B 5 = A V 2  ( I L X , X W , S H , B T )  
1 7 1 0  B 6 = A V 2 ( I L X , X W , J P H , B T ) :  R B O X ( 6 , B T )  = U N I T ( I , B T ) + B 1 + B 2 + B 3 + B 4 + B 5 + B 6  
1 7 2 0  N E X T  B T  
1 7 3 0  '  t h e  p r e v i o u s  b e s t  a l l o c a t i o n  v e c t o r  
1 7 4 0  F O R  B T = 1  T O  N B T  :  R B O X  ( 7 , B T ) = A V 1 ( I L X . I W X , I H X , B T ) :  N E X T  B T  
1750 ' 
1 7 6 0  '  c a l c u l a t e  b o x  r a t i o s  
1770 ' 
1 7 8 0  F O R  Y Y  = 1  T O  7  :  T O T A L 1 ( Y Y ) = 0  :  N E X T  Y Y  
1 7 9 0  F O R  Y Y = 1  T O  7  :  F O R  B T = 1  T O  N B T  
1 8 0 0  T O T A L  1  ( Y Y ) = T 0 T A L 1  ( Y Y ) + R B O X  ( Y Y . B T )  
1 8 1 0  N E X T  B T  :  N E X T  Y Y  
1 8 2 0  F O R  J l  =  l  T O  7  :  R T ( J 1 ) = 0  :  N E X T  J l  
1 8 3 0  F O R  J l = l  T O  7  :  F O R  B T = 1  T O  N B T  
1 8 4 0  I F  T Y P E ( N B T - 1 ) = T Y P E ( N B T )  O R  l = N B T  G O T O  i 8 6 0  
1 8 5 0  R T ( J 1 ) = R T ( J 1 ) + R B 0 X ( J 1 , B T ) / N B 0 X ( B T )  :  G O T O  I 8 8 O  
i 8 6 0  I F  T O T A L ! ( J 1 ) = 0  T H E N  R T  ( J  1 ) = R T ( J  1 ) + N B O X  ( B T ) / T 0 T A L 2  ;  G O T O  I 8 8 O  
1 8 7 0  R T ( J l )  = R T  ( J  1  )  + A B S  ( R B O X  ( J  1 , B T )  /T O T A L  1  ( J  1  )  - N B O X  ( B T )  / T 0 T A L 2 )  
1 8 8 0  N E X T  B T  :  N E X T  J l  
1 8 9 0  P N T = 1  :  P T = 1  
1 9 0 0  I F  P N T  < =  7  G O T O  2 0 3 0  
1 9 1 0  '  
1 9 2 0  '  i f  K Y = 1 ,  s o m e  a l l o c a t i o n  v e c t o r  s a t i s f i e s  R u l e  4  
1 9 3 0  '  i f  K Y = 2 .  a p p l y  R u l e  3  
1940 ' 

1 9 5 0  I F  M A X ( 2 )  >  L A R G E  O R  K Y = 1  G O T O  2 3 0 0  
i 9 6 0  M A X ( 2 ) = L A R G E  
1 9 7 0  F O R  B T = 1  T O  N B T  ;  N C A  ( 2 . B T ) = A L  ( B T ) :  N E X T  B T  
1 9 8 0  G O T O  2 3 0 0  
1990 ' 
2 0 0 0  '  a p p l y  R u l e  1  t o  s e l e c t  t h e  f u n c t i o n  v a l u e  
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2010 '  
2 0 2 0  R X 1 = R T ( I N D E X  ( P T ) )  
2 0 3 0  F O R  J 1 = P T  T O  6  
2 0 4 0  I F  W A ( J l )  < >  W A ( J 1 + 1 )  G O T O  2 0 7 0  
2 0 5 0  I F  R X l  >  R T ( I N D E X ( J + 1 ) )  T H E N  R X  l ^ R T  ( I  N D E X  ( J + 1 )  )  :  P N T = J 1  +  1  
2 0 6 0  N E X T  J 1  
2 0 7 0  L A R G E = B A ( I N D E X ( P N T ) )  ;  R A T  1 0 = R T ( I N D E X ( P N T )  )  
2 0 8 0  F O R  B T = 1  T O  N B T  :  A L  ( B T ) = R B O X  { I N D E X  ( P N T ) , B T ) ;  N E X T  B T  
2 0 9 0  '  
2 1 0 0  '  a p p l y  R u l e  4  :  i f  a l l o c a t e d  n u m b e r  >  d e s i r e d  n u m b e r  
2 1 1 0  '  f o r  s o m e  b o x  t y p e ,  t r y  t h e  n e x t  b e s t  f n .  v a l u e  
2 1 2 0  '  ( g o  t o  2 2 3 0  i f  R u l e  4  i s  n o t  a p p l i e d )  
2130 ' 
2 1 4 0  J = 1  :  K = 1  
2 1 5 0  I F  K  >  N O B  T H E N  2 2 3 0  
2 1 6 0  I F  J = N B T  T H E N  G O T O  2 2 1 0  
2 1 7 0  I F  T Y P E  ( J )  O T Y P E  ( J + 1 )  G O T O  2 2 1 0  
2 1 8 0  I F  A L ( J ) + A L ( J + 1 )  >  ( i + Z O L ) ' V N B O X  ( K )  G O T O  2 2 0 0  
2 1 9 0  J = J + 2  :  K = K + 1  :  G O T O  2 1 5 0  
2 2 0 0  P N T = P N T + 1  :  P T = P N T + 1  :  G O T O  I 9 O O  
2 2 1 0  I F  A L ( J )  >  ( 1 + Z 0 L ) ' ' < N B 0 X ( K )  G O T O  2 2 0 0  
2 2 2 0  J = J + 1  :  K = K + 1  :  G O T O  2 1 5 0  
2 2 3 0  K Y = 1  
2 2 4 0  '  
2 2 5 0  '  a p p l y  R u l e  2  
2260 ' 
2 2 7 0  I F  M A X ( I )  >  L A R G E  O R  ( M A X  (  1 ) = L A R G E  A N D  O P T R  <  R A T I O )  G O T O  2 3 0 0  
2 2 8 0  0 P T R = R A T I 0  :  M A X ( 1 ) = L A R G E  
2 2 9 0  F O R  B T = 1  T O  N B T  ;  N C A  ( 1 , B T ) = A L ( B T )  ;  N E X T  B T  
2 3 0 0  N E X T  J P L  :  N E X T  J P W  :  N E X T  J P H  
2310 ' 
2 3 2 0  '  a s s i g n  t h e  b e s t  f u n c t i o n  v a l u e  a n d  a l l o c a t i o n  v e c t o r  
2330 ' 
2 3 4 0  F 2 ( I L X , I W X , ! H X ) = H A X ( K Y )  
2 3 5 0  F O R  B T = 1  T O  N B T :  A V 2  ( I L X , I W X , I H X , B T ) = N C A ( K Y , B T )  :  N E X T  B T  
2 3 6 0  N E X T  I L X  :  N E X T  I W X ;  N E X T  I H X  
2370 ' 
2 3 8 0  F O R  H = 1  T O  H P :  F O R  W = 1  T O  W P :  F O R  L = 1  T O  L P  
2 3 9 0  F 1  ( L , W , H ) = F 2 ( L , W , H )  
2 4 0 0  F O R  B T = 1  T O  N B T ;  A V I ( L , W , H , B T ) = A V 2  ( L , W , H , B T )  :  N E X T  B T  
2 4 1 0  N E X T  L :  N E X T  W :  N E X T  H  
2 4 2 0  1 = 1 + 1  
2 4 3 0  G O T O  7 6 0  :  '  s t a r t  a  n e w  s t a g e  
2 4 4 0  '  
2 4 5 0  '  d e l i v e r  s o l u t i o n  
2 4 6 0  '  
2 4 7 0  P R I N T  " F U N C T I O N  V A L U E :  " , F 2  ( L P , W P , H P )  
2 4 8 0  P R I N T  " B O X  S I Z E " , " N U M B E R "  
2 4 9 0  F O R  B T = 1  T O  N B T  
2 5 0 0  P R I N T  L B ( B T ) ; "  x  " ; W B ( B T ) ; "  x  " ; H B  ( B T ) , A V 2 ( L P , W P , H P , B T )  
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2 5 1 0  N E X T  B T  
2 5 2 0  E N D  
2530 ' 
2 5 4 0  '  s o r t  t h e  f u n c t i o n  v a l u e s  i n  n o n i n c r e a s i n g  o r d e r  
2550 ' 
2 5 6 0  F O R  J  1  =  1  T O  7 :  W A ( J 1 ) = B A ( J 1 )  :  I N D E X  ( J 1 ) = J 1  :  N E X T  J 1  
2 5 7 0  F O R  J  1  =  1  T O  6  :  L 1 = J 1 :  J J = J 1  +  1  
2 5 8 0  F O R  J 2 = J J  T O  7 :  I F  W A ( L 1 )  > =  W A ( J 2 )  G O T O  2 6 0 0  
2 5 9 0  L 1 = J 2  
2 6 0 0  N E X T  J 2  
2 6 1 0  S T 0 R E = W A ( J 1 )  :  W A  ( J  1  )  = W A  ( L 1  )  ;  W A  ( L I )  « S T O R E  
2 6 2 0  S T 0 R E = I N D E X ( J 1 )  ;  I N D E X  ( J  1 )  =  I N D E X ( L 1 )  :  I N D E X ( L I )  = S T 0 R E  
2 6 3 0  N E X T  J 1  
2 6 4 0  R E T U R N  
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XI. APPENDIX C. 

ROBOT CONTROL PROGRAM 
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This program allows the Rhino XR-2 robot to perform the palletizing 

task automatically. The Rhino conveyor, the turntable and the vacuum 

pick-up are also controlled by this program. The box type number is 

generated by a random number generator. It is assumed that boxes con

veyed to the robot's pick-up position always follow a fixed orientation. 

The largest dimension of a box's length and width must be parallel to 

the conveyor's moving direction when the box is placed on the conveyor. 

Definition of program variables: 

INDEX = index for moving speed via keyboard manipulation 

H = length between the base joint and the shoulder joint 

L = length of Rhino XR-2 robot's shoulder and elbow 

LL = length of the gripper 

CNYH = height of the conveyor 

TABLER = height of the turntable 

STORAGEH = height of the storage area 
HZ = reference height above any obstruction 

SRCH = node number selected from the chain for placing 

a box on the pallet 

BT = size number of a box currently considered 

IX(i),IY(i),IZ(i) = initial position of storage area i along the 

X-, the y- and the z-axis, respectively 

LX(i),LY(i),LZ(i) = extreme position of storage area i along the 

X-, y- and z-axis, respectively 
LH(i),WH(i),HT(i) = the length, width and height of box size i, 

respectively 

IP(i) = hard home position in encoder holes 

Pl(i) = the point above the pick-up position in encoder-

holes 
P2(i,j) = the pick-up position of box size i in encoder holes 

SA(i,j) = current placement location for storage area i 
PX(i),PX(i),PZ(i) = placement location on a pallet for node #1 along 

the X-, y- and z-axis, respectively 

PO(i) = orientation of node i. 

Do nothing if PO(i) = 0; 

twist the gripper 90° if PO(i) = 1. 

RANGE(i,j) = box proportion of size j for distribution #i 

NOPRE(i,j) = number of predecessors of node j for pallet i 

INDEX(i,j) = forward pointer of node j for pallet i 
INVR(i,j) = backward pointer of node j for pallet i 

START(i,j) = start record address of chain/size j for pallet i 
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T(i) = node // of the tail of a network branch i (working 

vector later on) 
B(i) = node # of the head of a network branch i 

PNT(i) = start record address of node i in the network 

branch file 

PALLET(i) = current number of boxes remaining to complete 

a full pallet cube 

NSEQ(i) = vector for generating random size number of box 

PROB(i) = cumulative box proportion 

RT(i) = offset number of encoder holes for a specific motor 

FC(i,j) = detect for closure of microswitch i 

(i = 1,2,3 for base, shoulder and elbow, respective

ly) 

SPP$(i,j) = moving number of encoder holes with positive direc

tion for keyboard manipulation 

SPN$(i,j) = moving number of encoder holes with negative direc

tion for keyboard manipulation 

MTR$(i) = motor name specified by i 

SIGN$(i) = moving direction of the motor specified by i 

C(i) = working vector storing the encoder holes to be moved 
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1 0  ' A  s ' e  > ' c  5 ' c  s ' c  A  A  > V  ) ' <  is it is is is is is is is is is is is is is is is is is is is it is is is is is is is is is is is is is is is is is is is is is is is is is is is is is 

20 ' 
3 0  '  P a l l e t i z i n g  c o n t r o l  p r o g r a m  
4 0  '  
5 0  '  f o r  
60 ' 
7 0  '  R h i n o  X R - 2  r o b o t  
80 ' 
go ' isisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisisitisisisisisisisisisisisisisisisisisisisis 

100 ' 
1 1 0  D E F I N T  I , N , Q  
1 2 0  D I M  I X ( 4 )  ,  I Y ( 4 )  ,  I Z ( 4 )  , L X ( 4 )  , L Y ( 4 )  , L Z ( 4 )  
1 3 0  D I M  L H(4) , W H(4) , H T(4) , H H(4) , G N $ ( 3 )  , R T ( 3 )  
1 4 0  D I M  I P ( 5 ) , P 1 ( 5 ) , P 2 ( 4 , 5 ) , P U ( 5 ) , P D ( 5 )  
1 5 0  D I M  S A ( 4 , 3 )  , J K ( 1 0 , 5 )  . N S E Q ( 2 0 0 )  , A P ( 5 )  
1 6 0  D I M  P A L L E T  ( 4 ) , N O P R E  ( 5 , 6 6 ) , I N D E X  ( 5 , 6 6 )  
1 7 0  D I M  I N V R ( 5 , 6 6 )  , P R 0 B ( 4 )  , R A N G E ( 2 0 , 4 )  , F C ( 3 , 3 )  
I B O  D I M  T Y P E  ( 6 6 )  , T ( 6 6 )  , 8 ( 6 6 ) , P N T  ( 6 6 )  . S T A R T  ( 5 , 5 )  
1 9 0  D I M  P X ( 6 6 )  , P Y ( 6 6 )  , P Z ( 6 6 )  , P 0 ( 6 6 )  
2 0 0  D I M  S P P $ ( 6 , 2 ) , S P N $ ( 6 , 2 )  , M T R $ ( 4 ) , S I G N $ ( 4 )  
2 1 0  D I M  C ( 5 )  , H 0 ( 3 )  , I D X ( 3 )  , M 0 $  ( 3 )  , S 0 $  ( 3 )  , S P $  ( 2 , 2 )  
220 ' 
2 3 0  '  s e t  u p  p a r a m e t e r s  
2 4 0  '  
2 5 0  S P P $ ( 1 , 1 ) = " F + 1 "  
2 6 0  S P N $ ( 1 , 1 ) = " F - 1 "  
2 7 0  S P P $  ( 2 , 1 ) = " E + 1 "  
2 8 0  S P N $ ( 2 , 1 ) = " E - 1 "  
2 9 0  S P P $  ( 3 , 1 ) = " D + 1 "  
3 0 0  S P N $  ( 3 , 1 ) = " D - 1 "  
3 1 0  S P P $  ( 4 , 1 ) = " G + 1 "  
3 2 0  S P N $  ( 4 , 1 ) = " G - 1 "  
3 3 0  S P P $ ( 5 , 1 ) = " A + 1 "  
3 4 0  S P N $  ( 5 . 1 ) = " A - 1 "  
3 5 0  S P P $  ( 6 ,  l ) = " H + r  
3 6 0  S P N $ ( 6 , 1 ) = " H - 1 '  

S P P $  ( l , 2 ) = " F + 1 0 "  
S P N $  ( 1 . 2 ) = " F - 1 0 "  
S P P $  ( 2 . 2 ) = " E + 1 0 "  
S P N $  ( 2 , 2 ) = " E - 1 0 "  
S P P $  ( 3 , 2 ) = " D + 1 0 "  
S P N $  ( 3 , 2 ) = " D - 1 0 "  
S P P $  ( 4 , 2 ) = " G + 1 0 "  
S P N $  ( 4 , 2 ) = " G - 1 0 "  
S P P $  ( 5 . 2 ) = " A + 5 "  
S P N $  ( 5 , 2 ) = " A - 5 "  
S P P $  ( 6 , 2 ) = " H + 1 0 "  
S P N $  ( 6 , 2 ) = " H - 1 0 "  

3 7 0  M T R $ ( 1 ) = " F "  :  M T R $ ( 2 ) = " E "  :  M T R $ ( 3 ) = " D "  ;  M T R $ ( 4 ) = " A "  
3 8 0  Z 0 $ = ' " 6 "  ;  Z l = 6  :  Z 2 = 9 5 - Z 1  
3 9 0  I N D E X = 1  :  Q K = 0  
4 0 0  H = 1 0 . 8  ;  L = 9  :  L L = 6 . 2 5  
4 1 0  P l = 3 . 1 4 1 5 9  :  C = l 8 0 1 / P I  ;  P = - 9 0 / C  ;  R = 0  
4 2 0  S F = 2 6 2 0 A C / 3 6 0  :  S E = 3 l 4 4 A C / 3 6 0  :  S D = S E  
4 3 0  S C = 4 5 4 l . 3 A C / 3 6 0  :  S A = 4 . 1 6 6 7 * 0  
4 4 0  G N $ ( 1 ) = " - "  :  G N $  ( 2 )  = " + "  :  G N $ ( 3 ) = " - "  
4 5 0  R T ( 1 ) = 1 0 9  :  R T ( 2 ) = 9 1  :  R T ( 3 ) = 7 4  
4 6 0  F C ( 1 , 1 ) = 8  :  F C ( 1 , 2 ) = 1 0  :  F C ( 1 , 3 ) = 1 2  
4 7 0  F C ( 2 , 1 ) = 4  :  F C ( 2 , 2 ) = 6  :  F C ( 2 , 3 ) = 1 2  
4 8 0  F C ( 3 , 1 ) = 2  ;  F C ( 3 , 2 ) = 6  :  F C ( 3 , 3 )  =  1 0  
4 9 0  P R I N T  # l , " l "  :  A $ = I N P U T $ ( 1 , # 1 )  :  S W T C H = A S C  ( A $ )  
5 0 0  I F  S W T C H  <  3 2  T H E N  S W T C H = 3 1  E L S E  S W T C H = 9 5  
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5 1 0  F O R  J = 1  T O  4  :  H H ( J ) = 0  :  N E X T  J  
5 2 0  H Z = 1 2  :  A F = 1  :  N N = » 1  :  Q 0 = 3 0  :  Q I = Q O  :  P R C T G = O l  
5 3 0  T A B L E H = 7 I  :  C N Y H = 3 . 7 5  :  S T O R A G E H = M  
5 4 0  '  
5 5 0  '  d i m e n s i o n s  o f  b o x e s  
5 6 0  '  
5 7 0  W H ( I ) = 1 . 2  :  L H ( 1 ) = 1 . 2  :  H T ( 1 )  =  1  
5 8 0  W H ( 2 ) = 2 . 2  :  L H ( 2 ) = 1 . 2  :  H T ( 2 )  =  1  
5 9 0  W H ( 3 ) = 2 . 2  :  L H ( 3 ) = 2 . 2  :  H T  ( 3 )  = 2  
6 0 0  W H ( 4 ) = 3 . 2  :  L H ( 4 ) = 2 . 2  :  H T ( 4 )  =  1  
6 1 0  '  
6 2 0  '  i n i t i a l  a n d  e x t r e m e  l o c a t i o n s  o f  s t o r a g e s  
6 3 0  '  .  
6 4 0  I X ( 1 ) = 9 . 5  :  I Y ( 1 ) = 6  :  I Z  ( 1 )  = S T 0 R A G E H + 1  
6 5 0  I X  ( 2 ) = 1 2 . 5  :  I  Y  ( 2 ) = 6  :  I Z  ( 2 )  = S T 0 R A G E H + 1  
6 6 0  I X  ( 3 )  = 5  :  I Y ( 3 ) = 1 0  :  I Z  ( 3 )  = S T 0 R A G E H + 2  
6 7 0  I X  ( 4 )  = 1 . 5  :  I Y ( 4 ) = 1 0  :  I Z  ( 4 )  = S T 0 R A G E H + 1  
6 8 0  L X ( 1 ) = 1 0 . 7  :  L Y ( 1 ) = 1 0 . 8  :  L Z  ( 1  )  = S T 0 R A G E H + 4  
6 9 0  L X ( 2 ) = 1 2 . 5  :  L Y ( 2 ) = I 0 . 8  :  L Z  ( 2 )  = S T 0 R A G E H + 4  
7 0 0  L X ( 3 ) = 7 . 2  :  L Y ( 3 ) = 1 4 . 4  :  L Z  ( 3 )  = S T 0 R A G E H + 8  
7 1 0  L X ( 4 ) = 1 . 5  :  L Y ( 4 ) = 1 4 . 4  :  L Z  ( 4 )  = S T 0 R A G E H + 4  

I 7 2 0  
7 3 0  '  p i c k - u p  p o s i t i o n s  o f  v a r i o u s  b o x  s i z e s  
7 4 0  '  
7 5 0  X = 9  :  Y = 0  :  Z = 1 3 . 5  :  G O S U B  4 2 3 0  :  '  h o m e  p o s i t i o n  
7 6 0  I P ( 1 ) = T 1  :  I P ( 2 ) = T 2  :  I P ( 3 ) = T 3  :  I P ( 4 ) = T 4  :  I P ( 5 ) = A N G L E  
7 7 0  G O S U B  6 0 7 0  
7 8 0  X = 1 2  :  Y = - 2  :  Z = 1 2  :  G O S U B  4 2 3 0  ;  '  p t .  a b o v e  p i c k - u p  p o s .  
7 9 0  P 1 ( 1 ) = T 1  :  P 1 ( 2 ) = T 2  :  P 1 ( 3 ) = T 3  :  P 1 ( 4 ) = T 4  :  P 1 ( 5 ) = A N G L E  
8 0 0  X = 1 3 . 5  :  Y = - 1 . 5  :  Z = C N Y H + 1  ;  G O S U B  4 2 3 0  :  '  p o s .  o f  t y p e  1  
8 1 0  P 2 ( 1 , 1 ) = T 1  :  P 2 ( 1 , 2 ) = T 2  :  P 2 ( 1 , 3 ) = T 3  
8 2 0  P 2 ( 1 , 4 ) = T 4  :  P 2 ( 1 , 5 ) = A N G L E  
8 3 0  X = l 4  :  Y = - 1 . 5  :  Z = C N Y H + 1  :  G O S U B  4 2 3 0  :  '  p o s .  o f  t y p e  2  
8 4 0  P 2 { 2 , 1 ) = T 1  ;  P 2 ( 2 , 2 ) = T 2  ;  P 2 ( 2 , 3 ) = T 3  
8 5 0  P 2 ( 2 , 4 ) = T 4  :  P 2  ( 2 , 5 )  = A N G L E  
8 6 0  X = 1 4  :  Y = - l  ;  Z = C N Y H + 2  ;  G O S U B  4 2 3 0  :  '  p o s .  o f  t y p e  3  
8 7 0  P 2 ( 3 , 1 ) = T 1  :  P 2 ( 3 , 2 ) = T 2  :  P 2 ( 3 , 3 ) = T 3  
8 8 0  P 2 ( 3 , 4 ) = T 4  :  P 2 ( 3 , 5 ) = A N G L E  
8 9 0  X = 1 4 . 5  :  Y = - l  :  Z = C N Y H + 1  :  G O S U B  4 2 3 0  ;  '  p o s .  o f  t y p e  4  
9 0 0  P 2 ( 4 , 1 ) = T 1  :  P 2 ( 4 , 2 ) = T 2  :  P 2 ( 4 , 3 ) = T 3  
9 1 0  P 2 ( 4 , 4 ) = T 4  :  P 2  ( 4 , 5 )  = A N G L E  
9 2 0  F O R  J = 1  T O  4  
9 3 0  S A ( J , 1 ) = I X ( J )  ;  S A  ( J , 2 )  = 1 Y  ( J )  :  S A  ( J ,  3 )  = 1  Z  ( J )  
9 4 0  N E X T  J  
9 5 0  F O R  J = 1  T O  5  :  C  ( J ) = P 1 ( J ) - I P ( J )  ;  N E X T  J  
9 6 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
970 ' 
9 8 0  '  b o x  p r o p o r t i o n s  
990 ' 
1 0 0 0  R A N G E ( 1 , 1 ) = 0  :  R A N G E ( 1 , 2 ) = 1 / 3  :  R A N G E ( 1 , 3 ) = 1 / 3  :  R A N G E ( 1 , 4 )  
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1010 
1 0 2 0  
1 0 3 0  
1 0 4 0  
1 0 5 0  
1 0 6 0  
1 0 7 0  
1 0 8 0  
1 0 9 0  
1100 
11 10 
1 1 2 0  
1 1 3 0  
1 1 4 0  
1 1 5 0  
1 1 6 0  
1 1 7 0  
1 1 8 0  
1 1 9 0  
1 2 0 0  
1 2 1 0  
1 2 2 0  
1 2 3 0  
1 2 4 0  
1 2 5 0  
1 2 6 0  
1 2 7 0  
1 2 8 0  
1 2 9 0  
1 3 0 0  
1 3 1 0  
1 3 2 0  
1 3 3 0  
1 3 4 0  
1 3 5 0  
1 3 6 0  
1 3 7 0  
1 3 8 0  
1 3 9 0  
1 4 0 0  
1 4 1 0  
1 4 2 0  
1 4 3 0  
1 4 4 0  
1 4 5 0  
1 4 6 0  
1 4 7 0  
1 4 8 0  
1 4 9 0  
1 5 0 0  

R A N G E  ( 2 , 1  
R A N G E  ( 3 , 1  
R A N G E  ( 4 , 1  
R A N G E  ( 5 , 1  
R A N G E  ( 6 , 1  
R A N G E ( 7 , 1  
R A N G E  ( 8 , 1  
R A N G E  ( 9 , 1  
R A N G E  ( 1 0 ,  
R A N G E  ( 1 1 ,  
R A N G E  ( 1 2 ,  
R A N G E ( 1 3 ,  
R A N G E  ( 1 4 ,  
R A N G E  ( 1 5 ,  
R A N G E  ( 1 6 ,  
R A N G E ( 1 7 ,  
R A N G E  ( 1 8 ,  
R A N G E  ( 1 9 ,  
R A N G E  ( 2 0 ,  

R A N G E ( 2 , 2 ) = 1 / 3  :  
:  R A N G E ( 3 , 2 ) = 0  :  
R A N G E ( 4 , 2 ) = 2 / 3  :  
:  R A N G E ( 5 , 2 ) = 1 / 3  
R A N G E  ( 6 , 2 ) = 2 / 3  :  
:  R A N G E  ( 7  , 2 ) = 0  :  
:  R A N G E ( 8 , 2 ) = 1 / 3  
R A N G E ( 9 , 2 ) = 1 / 3  

R A N G E  ( 2 , 3 ) = 2 / 3  :  
R A N G E ( 3 , 3 ) = 1 / 3  :  
R A N G E ( 4 , 3 ) = 1 / 3  :  
:  R A N G E ( 5 , 3 ) = 1 / 3  
R A N G E  ( 6 ,  3 )  = 0  :  
R A N G E  ( 7 ,  3 )  = 2 / 3  
:  R A N G E  ( 8 , 3 ) = 0  
R A N G E  ( 9 ,  3 )  = 0  :  

R A N G E  ( 2 , 4 ) = 0  
R A N G E ( 3 , 4 ) = 1 / 3  
R A N G E  ( 4 , 4 ) = 0  
:  R A N G E  ( 5 , 4 )  = 0  

'0 : 

• 1 / 3  
•0 : 
• 1 / 3  
• 0  :  R A N G E  (6, 2 )  = 2 / 3  :  R A N G E  ( 6 , 3 )  = 0  :  R A N G E  (6,4) =  1 / 3  
• 1 / 3  :  R A N G E  ( 7  , 2 )  = 0  :  R A N G E  ( 7 ,  3 )  = 2 / 3  :  R A N G E  ( 7 , 4 )  = 0  
• 1 / 3  :  R A N G E  ( 8 , 2 )  = 1 / 3  :  R A N G E  ( 8 , 3 )  = 0  i R A N G E  ( 8 , 4 )  = 1 / 3  
' 0  :  R A N G E  ( 9 , 2 )  = 1 / 3  :  R A N G E  ( 9 ,  3 )  = 0  :  R A N G E  ( 9 , 4 )  = 2 / 3  
= 0 :  R A N G E ( 1 0 , 2 ) = 0 :  R A N G E  ( 1 0 , 3 ) = 1 / 3 :  R A N G E  ( 1 0 , 4 ) = 2 / 3  
=  1 / 3 :  R A N G E  ( 1 1 , 2 ) = 2 / 3 :  R A N G E ( 1 1 , 3 ) = 0 :  R A N G E ( 1 1 , 4 ) = 0  
= 0 :  R A N G E ( 1 2 , 2 ) = 0 :  R A N G E ( 1 2 , 3 ) = 0 :  R A N G E ( 1 2 , 4 ) = 1  
=  1 / 3 :  R A N G E ( 1 3 , 2 ) = 0 :  R A N G E  ( 1 3 , 3 ) = 0 :  R A N G E ( 1 3 , 4 ) = 2 / 3  
= 0 :  R A N G E ( 1 4 , 2 ) = 0 :  R A N G E ( 1 4 , 3 )  =  1 :  R A N G E  ( 1 4 , 4 ) = 0  
= 0 :  R A N G E ( 1 5 , 2 ) = 1 :  R A N G E  ( 1 5 , 3 ) = 0 :  R A N G E  ( 1 5 , 4 ) = 0  
= 0 :  R A N G E ( 1 6 , 2 ) = 0 :  R A N G E ( 1 6 , 3 ) = 2 / 3 :  R A N G E ( l 6 , 4 ) = 1 / 3  
= 2 / 3 :  R A N G E ( 1 7 , 2 ) = 1 / 3 :  R A N G E  ( 1 7 , 3 ) = 0 :  R A N G E ( 1 7 , 4 ) = 0  
=  1  :  R A N G E ( 1 8 , 2 ) = 0 :  R A N G E  ( 1 8 , 3 ) = 0 :  R A N G E  ( 1 8 , 4 ) = 0  
= 2 / 3 :  R A N G E ( 1 9 , 2 ) = 0 :  R A N G E  ( 1 9 , 3 ) = 1 / 3 :  R A N G E  ( 1 9 , 4 ) = 0  
= 2 / 3 :  R A N G E  ( 2 0 , 2 ) = 0 :  R A N G E  ( 2 0 , 3 ) = 0 :  R A N G E ( 2 0 , 4 ) = 1 / 3  

P R = 1  :  F 1 $ = " P L T "  :  F 3 $ = " . D A T "  
D A T E $ = " 1 - 1 - 1 9 8 6 "  ;  T I M E $ = " 0 0 : 0 0 : 0 0 "  
I N P U T  " T O T A L  N U M B E R  O F  P A L L E T S :  " ; T N P  
I N P U T  " E N T E R  N U M B E R  O F  C Y C L E S  F O R  S E L F - A D J U S T M E N T :  
I 

'  R S - 2 3 2 C  a s y n c h r o n o u s  c o m m u n i c a t i o n  
I 

C 0 M F I L $ = " C 0 M 1 ; 9 6 0 0 , E , 7 , 2 , D S "  
C L O S E  # 1  
O P E N  C O M F I L $  A S  # 1  

" ; C Y C  

C L S  :  
P R I N T  
P R I N T  
P R I N T  
P R I N T  
P R I N T  
P R I N T  
P R I N T  
P R I N T  
P R I N T  
P R I N T  

k e y b o a r d  m a n i p u l a t i o n  

L O C A T E  1 0 , 1  
" M A N U A L  O P E R A T I O N "  

B A S E  
1 

Q  

P R E S S  

S H L D R  
2 

E L B O W  
3  

P I T C H  
4  

R O L L  
5  

T A B L E "  
6 " 

W  R  

0 — S L O W  
9 — F A S T  

P R E S S  P R I N T  "  
X $ = I N K E Y $  
I F  X $ = " "  G O T O  1 4 5 0  
I F  X $ = " 9 "  T H E N  I N D E X = 2  
I F  X $ = " 0 "  T H E N  I N D E X = 1  
I F  X $ = " X "  G O T O  1 7 5 0  
I F  X $  0  " 1 "  G O T O  1 5 2 0  

S P E E D "  
S P E E D "  
X  T O  E X I T "  
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1 5 1 0  P R I N T  # 1 , S P P $ ( 1 , I N D E X )  
1 5 2 0  I F  X $  < >  " Q "  G O T O  1 5 4 0  
1 5 3 0  P R I N T  # 1 , S P N $ ( 1 , I N D E X )  
1 5 4 0  I F  X $  < >  " 2 "  G O T O  1 5 6 0  
1 5 5 0  P R I N T  # 1 , S P P $ ( 2 , I N D E X )  
1 5 6 0  I F  X $  0 " W "  G O T O  1 5 8 0  
1 5 7 0  P R I N T  # 1 , S P N $ ( 2 , I N D E X )  
1 5 8 0  I F  X $  0 " 3 "  G O T O  1 6 0 0  
1 5 9 0  P R I N T  # 1 , S P P $ ( 3 . I N D E X )  
1 6 0 0  I F  X $  0 " E "  G O T O  1 6 2 0  
1 6 1 0  P R I N T  # 1 , S P N $ ( 3 . I N D E X )  
1 6 2 0  I F  X $  0 " 4 "  G O T O  1 6 4 0  
1 6 3 0  P R I N T  # 1 , S P P $ ( 4 , I N D E X )  
1 6 4 0  I F  X $  0  " R "  G O T O  I66O 

1 6 5 0  P R I N T  # 1 , S P N $ ( 4 , I N D E X )  
1 6 6 0  I F  X $  0  " 5 "  G O T O  1 6 8 0  
1 6 7 0  P R I N T  # 1 , S P P $ ( 5 , I N D E X )  
1 6 8 0  I F  X $  0  " T "  G O T O  1 7 0 0  
1 6 9 0  P R I N T  # 1 , S P N $ ( 5 . I N D E X )  
1 7 0 0  I F  X $  0 "6" G O T O  1 7 2 0  
1 7 1 0  P R I N T  # 1 , S P P $ ( 6 , I N D E X )  
1 7 2 0  I F  X $  0 " Y "  G O T O  1 4 5 0  
1 7 3 0  P R I N T  # 1 , S P N $ ( 6 , I N D E X )  
1740 ' 

1 7 5 0  C I S  
1760 ' 
1 7 7 0  '  r e a d  d a t a  o f  a  p a l l e t  p a t t e r n  
1 7 8 0  '  
1 7 9 0  I N P U T  " E N T E R  P A L L E T  P A T T E R N  N U M B E R ;  " , F I L E N  :  G O S U B  5 6 6 O  
1 8 0 0  O P E N  P A T T E R N S  F O R  I N P U T  A S  # 3  
1 8 1 0  F O R  J = 1  T O  Q O  ;  N S E Q ( J ) = J  ;  N E X T  J  
1 8 2 0  A N G L = 3 6 0 / T N P  
1 8 3 0  I N P U T  # 3 , T Y P E , N O D E , A C T  
1 8 4 0  E 1 = 0  
1 8 5 0  F O R  J = 1  T O  T Y P E  
i 8 6 0  E 1 = E 1 + R A N G E ( F I L E N , J )  ;  P R O B  ( J )  = E  1 ' V Q O  
1 8 7 0  N E X T  J  
1 8 8 0  F O R  1 = 1  T O  N O D E  
1 8 9 0  I N P U T  iS' 3 , T E , T Y P E ( I )  , P X ( I )  , P Y ( I )  , P Z ( I )  , P O ( l )  ;  P N T ( l ) = 0  
1 9 0 0  N E X T  I  
1 9 1 0  F O R  1  =  1  T O  A C T  :  I N P U T  # 3 , T ( I ) , B ( I )  :  N E X T  I  
1 9 2 0  F O R  1 = 1  T O  5  :  F O R  J = 1  T O  5  :  S T A R T ( I , J ) = 0  :  N E X T  J  :  N E X T  I  
1 9 3 0  M A X = N O D E  :  I F  M A X  <  A C T  T H E N  M A X = A C T  
1 9 4 0  C L O S E  # 3  
1950 ' 
i 9 6 0  '  c o n s t r u c t  c h a i n s  
1970 ' 
1 9 8 0  F O R  1 = 1  T O  T N P + 1  :  F O R  J = 1  T O  M A X  
1 9 9 0  N 0 P R E ( l , J ) = 0  :  I N D E X  ( I , J )  = 0  :  I N V R ( l , J ) = 0  
2 0 0 0  N E X T  J  ;  N E X T  I  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  

G O T O  1 4 5 0  
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2 0 1 0  B ( A C T + 1 ) = 0  :  T ( A C T + 1 ) = 0  :  J = 1  :  N 0 = T ( 1 )  
2 0 2 0  N O P R E  ( 1 , B ( 1 ) ) = N 0 P R E  ( 1  , B ( 1 ) )  +  1  
2 0 3 0  F O R  1 = 2  T O  A C T + 1  
2 0 4 0  N O P R E  ( 1 , B ( I ) ) = N 0 P R E  ( 1  , B ( I ) ) + 1  
2 0 5 0  I F  N 0 = T ( l )  G O T O  2 0 7 0  
2 0 6 0  P N T ( N O ) = J  :  N O = T ( l )  :  J = l  
2 0 7 0  N E X T  I  
2 0 8 0  F O R  1 = 1  T O  T Y P E  :  T ( l ) = 0  :  N E X T  I  
2 0 9 0  F O R  1 = 1  T O  N O D E  
2 1 0 0  I F  T ( T Y P E ( l ) ) = 0  T H E N  S T A R T  ( 1 , T Y P E  ( ! ) ) = !  
2 1 1 0  I N 0 E X ( 1 , T ( T Y P E ( I ) ) ) = I  :  T  ( T Y P E  ( ! ) )  =  !  
2 1 2 0  N E X T  I  
2 1 3 0  F O R  1 = 1  T O  T Y P E  ;  T ( l ) = 0  ;  N E X T  I  
2 1 4 0  F O R  l = N O D E  T O  1  S T E P  - 1  
2 1 5 0  I N V R d  , T ( T Y P E ( I ) ) )  =  I  ;  T ( T Y P E ( I ) ) = I  
2 1 6 0  N E X T  I  
2 1 6 5  I N D E X ( 1 , 0 ) = 0  
2 1 7 0  F O R  1 = 2  T O  T N P + 1  :  F O R  J = 0  T O  M A X  
2 1 8 0  N O P R E ( I , J ) = N O P R E  ( l . J )  
2 1 9 0  I N D E X d  , J ) = I N D E X ( 1 , J )  
2 2 0 0  I N V R d  , J )  =  I N V R ( 1 , J )  
2 2 1 0  N E X T  J  :  N E X T  I  
2 2 2 0  F O R  1 = 2  T O  T N P + 1  :  F O R  J = 1  T O  T Y P E  
2 2 3 0  S T A R T d , J ) = S T A R T d , J )  
2 2 4 0  N E X T  J  ;  N E X T  I  
2 2 5 0  F O R  J = 1  T O  T N P  :  P A L L E T ( I ) = N O O E  :  N E X T  I  
2260 ' 

2 2 7 0  '  p i c k  u p  a  b o x  f r o m  i n - f e e d i n g  c o n v e y o r  
2 2 8 0  '  
2 2 9 0  Q K = Q K + 1  
2 3 0 0  I F  Q K  M O D  C Y C  = 0  O R  Q K  =  1  T H E N  G O S U B  5 9 9 0  
2 3 1 0  G O S U B  5 8 1 0  :  '  g e n e r a t e  a  b o x  t y p e  
2 3 2 0  F O R  J = 1  T O  5  :  C ( J ) = P 2 ( B T , J ) - P 1  ( J )  :  N E X T  J  
2 3 3 0  C  ( 5 ) = A B S  ( C  ( 5 ) )  :  G O S U B  4 4 9 0  
2 3 4 0  P R I N T  # l , " C + 0 9 "  :  G O S U B  5 7 6 0  :  '  d e l a y  f o r  p i c k i n g  u p  a  b o x  
2 3 5 0  F O R  J = 1  T O  4  :  C  ( J ) = - C  ( J )  :  N E X T  J  :  G O S U B  4 4 9 0  
2360 ' 
2 3 7 0  '  d e t e r m i n e  w h e r e  t o  p l a c e  b o x e s  
2 3 8 0  '  ( p l a c e  t h e  b o x  o n t o  p a l l e t  i f  N C = 0 ;  
2 3 9 0  '  p l a c e  t h e  b o x  i n  t h e  s t o r a g e  a r e a  i f  N C = 1 )  
2 4 0 0  '  
2 4 1 0  G O S U B  3 3 3 0  
2 4 2 0  I F  N C = 0  G O T O  3 2 6 0  
2 4 3 0  I F  N C = I  G O T O  2 4 6 0  
2 4 4 0  P R I N T  " E R R O R "  ;  S T O P  
2450 ' 
2 4 6 0  '  p l a c e  a  b o x  i n  t h e  s t o r a g e  a r e a  
2470 ' 
2 4 8 0  X = S A ( B T , 1 )  :  Y = S A ( B T , 2 )  ;  Z = H Z  :  G O S U B  4 2 3 0  
2 4 9 0  P U ( 1 ) = T 1  :  P U ( 2 ) = T 2  ;  P U  ( 3 )  = T 3  :  P U  ( 4 )  = T 4  ;  P U  ( 5 )  = A N G L E  
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2 5 0 0  F O R  J = l  T O  5  :  C  ( J )  = P U  ( J ) - P I  ( J )  :  N E X T  J  
2 5 1 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
2 5 2 0  X = S A ( B T , 1 )  :  Y = S A ( B T , 2 )  :  Z = S A ( B T , 3 ) + A F  :  G O S U B  4 2 3 0  
2 5 3 0  P 0 ( 1 ) = T 1  :  P D ( 2 ) = T 2  :  P D ( 3 ) = T 3  :  P D  ( 4 )  = T 4  ;  P D  ( 5 )  « A N G L E  
2 5 4 0  F O R  J = 1  T O  5  :  C ( J ) = P D ( J ) - P U ( J )  ;  N E X T  J  
2 5 5 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
2 5 6 0  F O R  J = 1  T O  5  :  T  ( J ) = P D  ( J )  :  N E X T  J  
2 5 7 0  T X = S A ( B T , 1 )  !  T Y = S A ( B T , 2 )  :  T Z = S A ( B T , 3 )  
2 5 8 0  G O S U B  5 1 6 0  :  '  g o  s t r a i g h t  d o w n  
2 5 9 0  P R I N T  # 1 , " C X "  :  G O S U B  5 7 6 0  :  '  d e l a y  f o r  p l a c i n g  a  b o x  
2 6 0 0  G O S U B  5 3 2 0  :  '  g o  s t r a i g h t  u p  
2 6 1 0  F O R  J = 1  T O  5  :  C ( J ) = P U ( J ) - P D ( J )  :  N E X T  J  
2 6 2 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
2630 ' 
2 6 4 0  '  u p d a t e  n e x t  p l a c e m e n t  l o c a t i o n  i n  s t o r a g e s  
2 6 5 0  '  
2 6 6 0  S A ( B T , 1 ) = S A ( B T , I ) + W H ( B T )  
2 6 7 0  I F  S A ( B T , 1 )  < =  L X ( B T )  G O T O  2 8 4 0  
2 6 8 0  S A ( B T , 1 )  =  I X ( B T )  :  S A  ( B T ,  2 )  = S A  ( B T ,  2 ) + L H  ( B T )  
2 6 9 0  I F  S A ( B T , 2 )  < =  L Y ( B T )  G O T O  2 8 4 0  
2 7 0 0  S A ( B T , 2 )  =  I Y ( B T )  :  S A  ( B T ,  3 )  = S A  ( B T ,  3 ) + H T  ( B T )  
2 7 1 0  I F  S A ( B T , 3 )  < =  L Z ( B T )  G O T O  2 8 4 0  
2720 ' 
2 7 3 0  '  s t o r a g e  o v e r f l o w  
2740 ' 
2 7 5 0  C L S  ;  P R I N T  " S T O R A G E  O V E R F L O W "  
2 7 6 0  P R I N T  :  P R I N T  " C L E A N  T H E  S T O R A G E "  
2 7 7 0  F O R  J = 1  T O  3  :  P L A Y  " C + L 2 "  :  N E X T  J  
2 7 8 0  P R I N T  :  P R I N T  " E N T E R  A N Y  K E Y  T O  C O N T I N U E  "  :  I N P U T  T E  :  C L S  
2 7 9 0  S A ( B T , 1 )  =  I X ( B T )  ;  S A  ( B T , 2 )  = 1 Y  ( B T )  :  S A  ( B T ,  3 )  = 1  Z  ( B T )  
2 8 0 0  F O R  J = 1  T O  5  :  C ( J ) = P 1  ( J ) - P U ( J )  :  N E X T  J  
2 8 1 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
2 8 2 0  G O T O  2 2 7 0  :  '  g o  b a c k  t o  p i c k - u p  p o s i t i o n  
2830 ' 
2 8 4 0  '  r e m o v e  o n e  b o x  f r o m  e v e r y  s t o r a g e  a r e a  
2 8 5 0  '  a n d  p l a c e  i t  o n  t h e  p a l l e t  
2 8 6 0  '  
2 8 7 0  P R 1 = 0  
2 8 8 0  I C U M = 0  
2 8 9 0  F O R  N = 1  T O  T Y P E  
2 9 0 0  I F  R A N G E ( F I L E N , N ) = 0  T H E N  I C U M = I C U M + 1  :  G O T O  3 1 9 0  
2 9 1 0  I F  S A ( N , 1 )  =  I X ( N )  A N D  S A  ( N ,  2 )  = 1  Y  ( N )  A N D  S A  ( N ,  3 )  = 1  Z  ( N )  T H E N  

I C U M = I C U M + 1  :  G O T O  3 1 9 0  
2 9 3 0  B T = N  :  G O S U B  3 3 3 0  
2 9 4 0  I F  N C = 1  T H E N  I C U M = I C U M + 1  :  G O T O  3 1 9 0  :  ' n o  p a l l e t  s p a c e  a v a i l .  
2950 ' 
2 9 6 0  '  d e t .  l o c a t i o n  o f  t h e  b o x  t o  b e  r e m o v e d  
2970 ' 
2 9 8 0  S A ( N ,  1 ) = S A ( N , 1 ) - W H  ( N )  
2 9 9 0  I F  S A ( N , 1 )  > =  I X ( N )  G O T O  3 0 5 0  
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3 0 0 0  S A ( N ,  1 ) = L X ( N )  :  S A ( N , 2 ) = S A ( N , 2 ) - L H ( N )  
3 0 1 0  I F  S A ( N , 2 )  > =  I Y ( N )  G O T O  3 0 5 0  
3 0 2 0  S A ( N , 2 ) = L Y ( N )  :  S A  ( N ,  3 )  « S A  ( N , 3 )  " H T  ( N )  
3 0 3 0  I F  S A ( N , 3 )  > =  I Z ( N )  G O T O  3 0 5 0  
3 0 4 0  S A ( N , 1 ) = I X ( N )  ;  S A ( N , 2 ) = I Y ( N )  :  S A ( N , 3 ) = I Z ( N )  
3 0 5 0  X = S A ( N , 1 )  !  Y = S A ( N , 2 )  :  Z = H Z  :  G O S U B  4 2 3 0  
3 0 6 0  P D ( 1 ) = T 1  :  P D ( 2 ) = T 2  :  P D ( 3 ) = T 3  :  P D ( 4 ) = T 4  :  P D  ( 5 )  « A N G L E  
3 0 7 0  F O R  J = 1  T O  5  :  C ( J ) = P D ( J ) - P U ( J )  ;  N E X T  J  
3 0 8 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
3 0 9 0  X = S A ( N , 1 )  :  Y = S A ( N , 2 )  :  Z = S A ( N , 3 ) + A F  :  G O S U B  4 2 3 0  
3 1 0 0  P U ( 1 ) = T 1  ;  P U ( 2 ) = T 2  :  P U ( 3 ) = T 3  :  P U ( 4 ) = T 4  :  P U ( 5 ) = A N G L E  
3 1 1 0  F O R  J = 1  T O  5  :  C  ( J ) = P U  ( J ) - P D  ( J )  :  N E X T  J  
3 1 2 0  C  ( 5 ) « A B S ( C ( 5 )  )  :  G O S U B  4 4 9 0  
3 1 3 0  F O R  J = 1  T O  5  :  T ( J ) = P U ( J )  :  N E X T  J  
3 1 4 0  T X = S A ( N , 1 )  :  T Y = S A ( N , 2 )  :  T Z = S A ( N , 3 )  :  G O S U B  5 1 é O  
3 1 5 0  P R I N T  # 1 , " C + 0 9 "  :  G O S U B  5 7 6 0  :  G O S U B  5 3 2 0  
3 1 6 0  F O R  J = 1  T O  5  :  C ( J ) = P D ( J ) - P U ( J )  :  N E X T  J  
3 1 7 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
3 1 8 0  G O S U B  3 6 9 0  :  '  m o v e  t o  p a l l e t  
3 1 9 0  N E X T  N  
3 2 0 0  I F  I  C U M  0 T Y P E  A N D  P A L L E T  ( P R ) / N O D E  < =  P R C T G  T H E N  

P R  1  =  1  :  G O T O  2 8 8 0  
3 2 2 0  F O R  J = 1  T O  5  :  C ( J ) = P 1  ( J ) - P U ( J )  :  N E X T  J  
3 2 3 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
3 2 4 0  G O T O  2 2 7 0  :  '  g o  t o  p i c k - u p  p o s i t i o n  
3250 ' 
3 2 6 0  '  t h e  p a l l e t  
3270 ' 
3 2 8 0  F O R  J = 1  T O  5  :  P D ( J ) = P 1 ( J )  :  N E X T  J  
3 2 9 0  G O S U B  3 6 9 0  :  '  p l a c e  b o x e s  o n  p a l l e t  
3 3 0 0  G O T O  2 8 4 0  :  '  m o v e  o n e  b o x  f r o m  e v e r y  s t o r a g e  
3 3 1 0  E N D  
3320 ' 
3 3 3 0  '  s e a r c h  t h e  c h a i n  t o  d e t .  b o x  p l a c e m e n t  l o c a t i o n  
3 3 4 0  '  
3 3 5 0  T ( 1 ) = P R  ;  T E = P R  :  N C = 0  
3 3 6 0  F O R  1 = 2  T O  T N P  
3 3 7 0  T E = T E + 1  :  I F  T E  >  T N P  T H E N  T E = 1  
3 3 8 0  T ( I ) = T E  :  N E X T  I  
3 3 9 0  F O R  K = 1  T O  T N P  :  T E = T ( K )  :  S E Q = K  
3 4 0 0  S R C H = S T A R T ( T E , B T )  
3 4 1 0  F O R  1 = 1  T O  N O D E  
3 4 2 0  I F  S T A R T  ( T E , B T ) = 0  G O T O  3 4 8 0  
3 4 3 0  I F  N 0 P R E ( T E , S R C H ) = O  T H E N  G O T O  3 5 2 0  
3 4 4 0  S R C H = I N D E X  ( T E , S R C H )  
3 4 5 0  I F  S R C H = 0  G O T O  3 4 8 0  
3 4 6 0  N E X T  I  
3 4 7 0  I F  P R 1 = 1  G O T O  3 4 9 0  
3 4 8 0  N E X T  K  
3 4 9 0  N C = 1  
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3 5 0 0  R E T U R N  ;  '  n o  p a l l e t  s p a c e  a v a i l a b l e  
3 5 1 0  '  
3 5 2 0  '  u p d a t e  t h e  c h a i n  
3 5 3 0  '  
3 5 4 0  I F  S T A R T  ( T E , B T ) = S R C H  T H E N  

S T A R T ( T E , B T ) = I N D E X ( T E , S R C H )  :  G O T O  3 5 8 0  
3 5 6 0  I N D E X ( T E , I N V R ( T E , S R C H ) ) « I N D E X ( T E . S R C H )  
3 5 7 0  I N V R ( T E ,  I N D E X ( T E , S R C H ) ) » I N V R ( T E , S R C H )  
3 5 8 0  I F  P N T ( S R C H ) = 0  G O T O  3 6 6 0  
3 5 8 5  N X T = S R C H  
3 5 9 0  F O R  1 = 1  T O  N O D E  
3 5 9 5  N X T = N X T + 1  
3 6 0 0  I F  P N T ( N X T )  0 0  T H E N  N O = P N T ( N X T ) - 1  :  G O T O  3 6 3 0  
3 6 1 0  I F  N X T = N 0 D E + 1  T H E N  N O = A C T  :  G O T O  3 6 3 O  
3 6 2 0  N E X T  I  :  P R I N T  " E R R O R  O N  P N T "  :  S T O P  
3 6 3 0  F O R  K = P N T ( S R C H )  T O  N O  
3 6 4 0  N O P R E  ( T E , B ( K ) ) = N O P R E  ( T E , B ( K )  )  - 1  
3 6 5 0  N E X T  K  
3 6 6 0  P L T N = T E  :  N C = 0  
3 6 7 0  R E T U R N  
3 6 8 0  '  
3 6 9 0  '  p l a c e  t h e  b o x  o n t o  t h e  p a l l e t  
3 7 0 0  '  r o t a t e  t h e  t u r n t a b l e  i f  n e c e s s a r y  
3 7 1 0  '  
3 7 2 0  I F  A N G L A ( S E Q - l )  < =  I 8 0  G O T O  3 7 4 0  
3 7 3 0  S P $ ( 1 , 1 ) = " - "  :  R T H = ( 3 6 0 / A N G L - S E Q + 1 ) A 2 6 2 0 / T N P  :  G O T O  3 7 5 0  
3 7 4 0  S P $ ( 1 , 1 ) = " + "  ;  R T H = 2 6 2 0 / T N P ' V ( S E Q - 1 )  
3 7 5 0  G O S U B  5 4 0 0  ;  '  r o t a t e  t a b l e  f o r  d e s i r e d  p a l l e t  
3 7 6 0  X = P X ( S R C H )  :  Y = P Y ( S R C H )  ;  Z = H Z  :  G O S U B  4 2 3 0  
3 7 7 0  P U ( 1 ) = T 1  :  P U ( 2 ) = T 2  :  P U ( 3 ) = T 3  :  P U ( 4 ) = T 4  :  P U ( 5 ) = A N G L E  
3 7 8 0  F O R  J = 1  T O  5  :  C ( J ) = P U ( J ) - P D ( J )  :  N E X T  J  
3 7 9 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
3 8 0 0  I F  P O ( S R C H )  0 1  G O T O  3 8 2 0  
3 8 1 0  S P $  ( 2 , 2 ) = " + "  :  G O S U B  5 5 3 0  
3 8 2 0  X = P X ( S R C H )  :  Y = P Y ( S R C H )  ;  Z = P Z  ( S R C H ) + T A B L E H + A F  ;  G O S U B  4 2 3 0  
3 8 3 0  P D ( 1 ) = T 1  ;  P D ( 2 ) = T 2  :  P D ( 3 ) = T 3  :  P D ( 4 ) = T 4  :  P D ( 5 ) = A N G L E  
3 8 4 0  F O R  J = 1  T O  5  :  C  ( J ) = P D  ( J ) - P U ( J )  :  N E X T  J  
3 8 5 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
3 8 6 0  F O R  J = 1  T O  5  :  T ( J ) = P D ( J )  ;  N E X T  J  
3 8 7 0  T X = P X ( S R C H )  ;  T Y = P Y ( S R C H )  :  T Z = P Z ( S R C H ) + T A B L E H  :  G O S U B  5 I 6 O  
3 8 8 0  P R I N T  # 1 , " C X "  ;  G O S U B  5 7 6 0  :  G O S U B  5 3 2 0  
3 8 9 0  F O R  J = 1  T O  5  :  C ( J ) = P U ( J ) - P D ( J )  :  N E X T  J  
3 9 0 0  C ( 5 ) = A B S  ( C ( 5 ) )  :  G O S U B  4 4 9 0  
3 9 1 0  I F  S P $ ( 1 , 1 ) = " + "  T H E N  S P $ ( 1 , 1 ) = " - "  E L S E  S P $ ( 1 , 1 ) = " + "  
3 9 2 0  G O S U B  5 4 0 0  :  '  r o t a t e  t a b l e  b a c k  t o  t h e  o r i g i n a l  p a l l e t  
3 9 3 0  P A L L E T ( P L T N ) " P A L L E T ( P L T N ) - 1  
3 9 4 0  I F  P O ( S R C H )  0 1  G O T O  3 9 6 0  
3 9 5 0  S P $ ( 2 , 2 ) = " - "  ;  G O S U B  5 5 3 0  
3 9 6 0  I F  P A L L E T  ( P L T N )  < >  0  T H E N  R E T U R N  
3970 ' 
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3 9 8 0  '  p a l l e t  I s  f u l l  
3 9 9 0  '  
4 0 0 0  F O R  J = 1  T O  5  :  C  ( J ) = P 1 ( J ) - P U ( J )  :  N E X T  J  
4 0 1 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
4 0 2 0  C L S  :  L O C A T E  1 0 , 5  :  P R I N T  " P A L L E T  I S  F U L L "  
4 0 3 0  F O R  J = 1  T O  3  :  P L A Y  " A + L 4 "  :  N E X T  J  
4 0 4 0  I F  P R = T N P  T H E N  P R = 1  E L S E  P R = P R + 1  :  '  u p d a t e  p a l l e t  p r i o r i t y  
4 0 5 0  N 0 = T N P + 1  
4 0 6 0  '  
4 0 7 0  '  r e s t o r e  t h e  p a r a m e t e r s  o f  t h e  c h a i n  
4 0 8 0  '  
4 0 9 0  F O R  J = 0  T O  M A X  
4 1 0 0  N O P R E  ( P L T N , J ) = N O P R E ( N O , J )  
4 1 1 0  I N D E X ( P L T N , J ) = I N D E X ( N O , J )  
4 1 2 0  I N V R ( P L T N , J )  =  I N V R ( N O , J )  
4 1 3 0  N E X T  J  
4 1 4 0  F O R  J = 1  T O  T Y P E  ;  S T A R T  ( P L T N , J ) = S T A R T  ( N O , J )  :  N E X T  J  
4 1 5 0  P A L L E T  ( P L T N ) = N O D E  
4 1 6 0  I F  T N P  0 1  T H E N  R T H = 2 6 2 0 / T N P  E L S E  R T H = 6 5 5  
4 1 7 0  S P $ ( 1 , 1 ) = " + "  :  G O S U B  5 4 0 0  :  '  r o t a t e  t h e  t u r n t a b l e  
4 1 8 0  P R I N T  " R E M O V E  T H E  P A L L E T  A N D  I N S E R T  A  N E W  P A L L E T "  :  P R I N T  
4 1 9 0  P R I N T  " E N T E R  A N Y  K E Y  W H E N  R E A D Y "  :  I N P U T  T E  ;  C L S  
4 2 0 0  G O T O  2 2 7 0  
4 2 1 0  R E T U R N  
4 2 2 0  '  
4 2 3 0  '  c o o r d i n a t e  t r a n s f o r m a t i o n  
4 2 4 0  '  
4 2 5 0  R R = S Q R ( X A X + Y A Y )  
4 2 6 0  T E = A B S ( H - Z - L L )  / I 8 I  
4 2 7 0  T E = - A T N ( T E / S Q R ( - T E A T E + 1 )  )  + 1 . 5 7 0 8  
4 2 8 0  T E = 1 8 ' V S I N ( T E )  
4 2 9 0  I F  R R  >  T E  T H E N  C L S  :  P R I N T  " E R R O R  O N  X Y Z - C O O R "  :  S T O P  
4 3 0 0  I F  X  =  0  T H E N  T 1 = S G N ( Y ) A P I / 2  
4 3 1 0  I F  X  >  0  T H E N  T 1 = A T N ( Y / X )  
4 3 2 0  I F  X  <  0  A N D  Y  >  0  T H E N  T 1 = P I - A T N  ( Y / A B S  ( X ) )  
4 3 3 0  I F  X  <  0  A N D  Y  <  0  T H E N  T 1 = - ( P I - A T N  ( Y / X ) )  
4 3 4 0  A N G L E = A B S  ( T l i V C )  
4 3 4 5  I F  X = 0  T H E N  T 4 = 0  E L S E  T 4 = A T N  ( A B S  ( Y / X ) )  
4 3 5 0  R O = R R  
4 3 6 0  Z O = Z + L L - H  
4 3 7 0  I F  R 0 = 0  T H E N  G = S G N ( Z 0 ) A P I / 2 l  E L S E  G = A T N ( Z O / R O )  
4 3 8 0  A = R O A R O + Z O A Z O  
4 3 9 0  A = 4 A L A L / A - 1  
4 4 0 0  A = A T N ( S Q R ( A ) )  
4 4 1 0  T 2 = A + G  
4 4 2 0  T 3 = G - A  
4 4 3 0  T 1  =  I N T ( T 1 A S F )  
4 4 4 0  T 2 = I N T ( T 2 A S E )  
4 4 5 0  T 3 = I N T ( T 3 A S D )  
4 4 6 0  T 4 = I N T ( T 4 A S A )  
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4 4 7 0  R E T U R N  
4 4 8 0  '  
4 4 9 0  '  s i m u l t a n e o u s  m o v e m e n t s  o f  b a s e ,  s h o u l d e r  a n d  e l b o w  
4500 ' 
4 5 1 0  S I G N $  ( ! ) = • " + "  ;  S I G N $ ( 2 ) = " + "  :  S I G N $ ( 3 ) = " + "  :  S I G N $ ( 4 ) = " + "  
4 5 2 0  I F  C ( l )  < 0  T H E N  S I G N $ ( I ) = " - "  
4 5 3 0  I F  C ( 2 )  > 0  T H E N  S I G N $ ( 2 ) = " - "  
4 5 4 0  I F  C ( 3 )  < 0  T H E N  S I G N $ ( 3 ) = " - "  
4 5 5 0  I F  C ( 5 )  < =  9 0  A N D  C ( l )  < 0  T H E N  S I G N $ ( 4 ) = " - "  
4 5 6 0  I F  C ( 5 )  < =  9 0  A N D  C O )  > 0  T H E N  S I G N $ ( 4 ) = " + "  
4 5 7 0  I F  C ( 5 )  >  9 0  A N D  C ( 1 )  <  0  T H E N  S I G N $ ( 4 ) = " + "  
4 5 8 0  I F  C ( 5 )  >  9 0  A N D  C ( l )  >  0  T H E N  S I G N $ ( 4 ) = " - "  
4590 ' 
4 6 0 0  '  s o r t  e n c o d e r  h o l e s  i n  n o n  I n c r e a s i n g  o r d e r  
4 6 1 0  '  
4 6 2 0  H 0 ( 1 ) = A B S ( C ( 1 ) )  :  H O  ( 2 )  = A B S  ( C  ( 2 )  )  :  H O  ( 3 )  = A B S  ( C  ( 3 )  )  
4 6 3 0  I D X ( 1 ) = 1  !  I  O X  ( 2 )  = 2  :  I D X ( 3 ) = 3  
4 6 4 0  F O R  J l = 1  T O  2  :  L 1 = J I  :  J J = J 1 + 1  :  F O R  J 2 = J J  T O  3  
4 6 5 0  I F  H O  ( L I )  <  H 0 ( J 2 )  T H E N  L I = J 2  
4 6 6 0  N E X T  J 2  
4 6 7 0  T E = H 0 ( J 1 )  :  H O ( J I ) = H O ( L I )  :  H O ( L I ) = T E  
4 6 8 0  T E = I D X ( J 1 )  :  I D X  ( J l )  =  1  D X  ( L I )  :  I 0 X ( L 1 ) = T E  
4 6 9 0  N E X T  J l  
4 7 0 0  F O R  1 = 1  T O  3  
4 7 1 0  M O $ ( l ) = M T R $ ( I D X ( l ) )  :  S 0 $  ( I )  = S  I  G N $  ( I  D X  ( I  )  )  
4 7 2 0  N E X T  I  
4730 ' 
4 7 4 0  I F  H 0 ( l ) = 0  G O T O  4 9 9 0  
4 7 5 0  E 1 = 0  :  C 0 U N T = 0  :  R A T E  1 = H 0  ( 2 ) / H O  ( 1 )  ;  R A T E 2 = H 0  ( 3 ) / H O  ( 1 )  
4 7 6 0  0 1 = 0  :  H S = H 0 ( 1 )  
4 7 7 0  P R I N T  # 1 , H 0 $  ( 1 ) ;  A $ = l N P U T $  ( 1 , # 1 )  :  C D = A S C  ( A $ ) - 3 2  
4 7 8 0  I F  C D  >  Z 2  G O T O  4 7 7 0  
4 7 9 0  I F  H S  >  Z 1  G O T O  4 8 2 0  
4 8 0 0  T N $ = C H R $  ( H S + 4 8 )  :  P R I N T  # 1 , M 0 $  ( 1 ) ; S 0 $ ( 1 )  ; T N $  
4 8 1 0  C O U N T = C O U N T + H S  :  G O T O  4 8 4 0  
4 8 2 0  P R I N T  # 1 , H 0 $ ( 1 )  ; S 0 $ ( 1 )  ; Z 0 $  
4 8 3 0  C 0 U N T = C 0 U N T + Z 1  
4 8 4 0  H S = H S - Z 1  
4 8 5 0  I F  H 0 ( 2 ) = 0  G O T O  4 9 5 0  
4 8 6 0  E 2 = I N T ( C 0 U N T > V R A T E 1 )  :  T E = E 2 - E 1  
4 8 7 0  I F  T E = 0  G O T O  4 9 0 0  
4 8 8 0  E 1 = E 2  :  T N $ = C H R $  ( T E + 4 8 )  
4 8 9 0  P R I N T  # 1 , M 0 $ ( 2 )  ; S 0 $ ( 2 )  ; T N $  
4 9 0 0  I F  H 0 ( 3 ) = 0  G O T O  4 9 5 0  
4 9 1 0  D 2 = I N T ( C 0 U N T A R A T E 2 )  :  T E = D 2 - D 1  
4 9 2 0  I F  T E = 0  G O T O  4 9 5 0  
4 9 3 0  0 1 = 0 2  :  T N $ = C H R $  ( T E + 4 8 )  
4 9 4 0  P R I N T  # 1 , M 0 $ ( 3 )  ; S 0 $ ( 3 )  ; T N $  
4 9 5 0  I F  H S  >  0  G O T O  4 7 7 0  
4960 ' 
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4 9 7 0  '  r o l l  g r i p p e r  t o  b e  p a r a l l e l  t o  t h e  y - a x i s  
4980 ' 
4 9 9 0  H S = A B S ( C ( 4 ) )  :  I F  H S = 0  G O T O  5 0 9 0  
5 0 0 0  P R I N T  # 1 , " A ? "  :  A $ = I N P U T $  ( 1 , # 1 )  :  C D = A S C  ( A $ ) - 3 2  
5 0 1 0  I F  C D  >  Z 2  G O T O  5 0 0 0  
5 0 2 0  I F  H S  >  Z I  G O T O  5 0 6 0  
5 0 3 0  T N $ = C H R $  ( H S + 4 8 )  
5 0 4 0  P R I N T  # 1 , M T R $ ( 4 )  ; S I G N $ ( 4 )  ; T N $  
5 0 5 0  G O T O  5 0 9 0  
5 0 6 0  P R I N T  # 1 , M T R $ ( 4 )  ; S I G N $ ( 4 )  ; Z 0 $  
5 0 7 0  H S = H S - Z 1  
5 0 8 0  I F  H S  >  0  G O T O  5 0 0 0  
5 0 9 0  C D = 0  
5 1 0 0  F O R  1 = 1  T O  4  ;  P R I N T  # 1 , M T R $ ( I ) ; " ? "  
5 1 1 0  T N $ = I N P U T $ ( 1 , # 1 )  :  C D = C D + A S C ( T N $ ) - 3 2  
5 1 2 0  N E X T  I  
5 1 3 0  I F  C D  0 0  G O T O  5 0 9 0  
5 1 4 0  R E T U R N  
5150 ' 
5 1 6 0  '  m o v e  t h e  a r m  s t r a i g h t  d o w n  
5170 ' 
5 1 8 0  J M = A F / N N  :  S Z = T Z + A F  
5 1 9 0  F O R  J = 1  T O  N N  
5 2 0 0  X = T X  :  Y = T Y  ;  Z = > S Z - J M ' V J  ;  G O S U B  4 2 3 0  
5 2 1 0  T Y P E ( 1 ) = T 1  :  T Y P E ( 2 ) = T 2  ;  T Y P E ( 3 ) = T 3  
5 2 2 0  T Y P E ( 4 ) = T 4  :  T Y P E  ( 5 )  = A N G L E  
5 2 3 0  F O R  J P = 1  T O  5  :  J K  ( J ,  J P )  = T Y P E  ( J P ) - T  ( J P )  :  N E X T  J P  
5 2 4 0  J K ( J , 5 ) = A B S ( J K ( J , 5 ) )  
5 2 5 0  F O R  J P = 1  T O  5  :  T ( J P ) = T Y P E  ( J P )  :  N E X T  J P  
5 2 6 0  N E X T  J  
5 2 7 0  F O R  J = 1  T O  N N  
5 2 8 0  F O R  J P = 1  T O  5  :  C ( J P ) = J K ( J , J P )  :  N E X T  J P  :  G O S U B  4 4 9 0  
5 2 9 0  N E X T  J  
5 3 0 0  R E T U R N  
5310 ' 
5 3 2 0  '  m o v e  t h e  a r m  s t r a i g h t  u p  
5330 ' 
5 3 4 0  F O R  J = N N  T O  1  S T E P  - I  
5 3 5 0  F O R  J P = 1  T O  4  :  C  ( J P ) = - J K  ( J , J P )  ;  N E X T  J P  
5 3 6 0  C ( 5 ) = A B S ( J K ( J , 5 ) )  :  G O S U B  4 4 9 0  
5 3 7 0  N E X T  J  
5 3 8 0  R E T U R N  
5390 ' 
5 4 0 0  '  r o t a t e  t h e  t u r n t a b l e  
5 4 ) 0  '  
5 4 2 0  H S = R T H  
5 4 3 0  P R I N T  # 1 , " H ? "  :  A $ = I N P U T $  ( 1 , # 1 )  :  C D = A S C  ( A $ ) - 3 2  
5 4 4 0  I F  C D  >  8 5  G O T O  5 4 3 0  
5 4 5 0  I F  H S  > =  1 0  G O T O  5 4 7 0  
5 4 6 0  T N $ = » C H R $  ( H S + 4 8 )  :  P R I N T  # 1 , " H " ; S P $ ( 1 , 1 ) ; T N $  :  G O T O  5 4 9 0  
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5 4 7 0  P R I N T  # 1 , " H " ; S P $ ( 1 , 1 ) ; " 1 0 "  :  H S = H S - 1 0  
5 4 8 0  I F  H S  >  0  G O T O  5 4 3 0  
5 4 9 0  P R I N T  :  A $ = I N P U T $ ( 1 , # 1 )  :  C D = A S C  ( A $ ) - 3 2  
5 5 0 0  I F  C D  0 0  G O T O  5 4 9 0  
5 5 1 0  R E T U R N  
5520 ' 
5 5 3 0  '  r o l l  t h e  g r i p p e r  t o  c h a n g e  b o x  o r i e n t a t i o n  
5 5 4 0  '  
5 5 5 0  H S = 3 7 5  
5 5 6 0  P R I N T  # 1 , " A 7 "  :  A $ = I N P U T $ ( 1 , # 1 )  ;  C D = A S C  ( A $ ) - 3 2  
5 5 7 0  I F  C D  >  8 5  G O T O  5 5 6 0  
5 5 8 0  I F  H S  > =  6  G O T O  5 6 0 0  
5 5 9 0  T N $ = C H R $  ( H S + 4 8 )  :  P R I N T  # 1 , " A " ; S P $ ( 2 , 2 )  ; T N $  ;  G O T O  5 6 2 0  
5 6 0 0  P R I N T  # 1 , " A " ; S P $ ( 2 , 2 ) ; " 6 "  :  H S = H S - 6  
5 6 1 0  I F  H S  >  0  G O T O  5 5 6 0  
5 6 2 0  P R I N T  # 1 , " A ? "  :  A $ = I N P U T $ ( 1 , # I )  :  C D = A . S C  ( A $ ) - 3 2  
5 6 3 0  I F  C D  0  0  G O T O  5 6 2 0  
5 6 4 0  R E T U R N  
5650 ' 
5 6 6 0  '  c o n v e r t  n u m b e r  t o  c h a r a c t e r s  f o r  
5 6 7 0  '  d e t e r m i n i n g  f i l e  n a m e  o f  a  p a l l e t  p a t t e r n  
5 6 9 0  '  
5 7 0 0  I F  F I L E N  <  1 0  T H E N  F 2 $ = C H R $  ( F I L E N + 4 8 )  ;  G O T O  5 7 3 0  
5 7 1 0  E 1  =  I N T ( F I L E N / 1 0 )  ;  R 1 0 $ = C H R $  ( E 1 + 4 8 )  
5 7 2 0  E 2 = F I L E N - E I > V 1 0  :  R O 1  $ = ' C H R $  ( E 2 + 4 8 )  :  F 2 $ = » R 1 0 $ + R 0 I $  
5 7 3 0  P A T T E R N $ = F 1 $ + F 2 $ + F 3 $  
5 7 4 0  R E T U R N  
5750 ' 
5 7 6 0  '  d e l a y  f o r  p i c k i n g  u p  a n d  p l a c i n g  a  b o x  
5770 ' 
5 7 8 0  F O R  J = 1  T O  5 0 0  :  E 1 = S Q R ( 2 )  :  N E X T  J  
5 7 9 0  R E T U R N  
5800 ' 
5 8 1 0  '  g e n e r a t e  b o x  s i z e s  u s i n g  r a n d o m  n u m b e r  g e n e r a t o r  
5 8 2 0  '  
5 8 3 0  E 1  =  I N T ( R N D >VQ1) + 1 

5 8 4 0  F O R  J = 1  T O  T Y P E  
5 8 5 0  I F  N S E Q ( E 1 ) < = P R 0 B ( J )  T H E N  B T = J  :  G O T O  5 8 8 O  
5 8 6 0  N E X T  J  
5 8 7 0  P R I N T  " E R R O R  O N  B T "  
5 8 8 0  H H ( B T ) = H H ( B T ) + 1  
5 8 9 0  F O R  J = 1  T O  B T  :  P L A Y  " G + L 6 "  ;  N E X T  J  
5 9 0 0  C L S  :  E 9 = 3 5 0  :  E 2 = 3 0  
5 9 1 0  F O R  J = 1  T O  B T  :  C I R C L E  ( E 9 , E 2 ) , 2 0 , B T  ;  P A I N T  ( E 9 , E 2 ) , B T  
5 9 2 0  E 2 = E 2 + 3 5  :  N E X T  J  
5 9 3 0  N S E Q ( E 1 ) = N S E Q ( Q 1 )  :  Q 1 = Q 1 - 1  
5 9 4 0  I F  Q 1  0 0  T H E N  R E T U R N  
5 9 5 0  Q 1 = Q 0  :  C L S  ;  P R I N T  " E N D  O F  T H E  D I S T R I B U T I O N "  
5 9 6 0  I N P U T  " E N T E R  A N Y  K E Y  T O  C O N T I N U E " ; T E  
5 9 7 0  G O T O  1 7 9 0  
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5 9 8 0  R E T U R N  
I 5 9 9 0  

6 0 0 0  F O R  J = 1  T O  5  :  C ( J )  =  I P ( J ) - P 1 ( J )  :  N E X T  J  :  '  b a c k  t o  h o m e  p o s .  
6 0 1 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  4 4 9 0  
6 0 2 0  G O S U B  6 0 7 0  
6 0 3 0  F O R  J = 1  T O  5  :  C ( J ) = P 1  ( J ) - I P ( J )  :  N E X T  J  
6 0 4 0  C ( 5 ) = A B S ( C ( 5 ) )  ;  G O S U B  4 4 9 0  
6 0 5 0  R E T U R N  
6 0 6 0  
6 0 7 0  '  s e l f - a d j u s t  t o  h a r d  h o m e  p o s i t i o n  
6 0 8 0  '  
6 0 9 0  P R I N T  # 1 , " I "  :  A $ = I N P U T $ ( 1 , # 1 )  :  I N T R P = A S C  ( A $ )  
6 1 0 0  S W T C H = 3 1  :  I F  I N T R P  >  3 I  T H E N  S W T C H = 9 5  
6 1 1 0  F R = S W T C H - I N T R P  ;  G $ = " + "  
6 1 2 0  I F  F R = 1 4  O R  F R = F C ( 1 , 1 )  T H E N  J = 1 : H S = 1 2 O ; G 0 S U B  6 4 6 0  
6 1 3 0  I F  F R = F C ( 1 , 2 )  O R  F R = F C ( 1 , 3 )  T H E N  J = 1  :  H S = 1 2 0  :  G O S U B  6 4 6 0  
6 1 4 0  I F  F R = 1 4  O R  F R = F C ( 2 , 1 )  T H E N  J = 2 : H S = 1 0 O : G 0 S U B  6 4 6 0  
6 1 5 0  I F  F R = F C ( 2 , 2 )  O R  F R = F C ( 2 , 3 )  T H E N  J = 2  ;  H S = 1 0 0  :  G O S U B  6 4 6 0  
6 1 6 0  I F  F R = 1 4  O R  F R = F C ( 3 , 1 )  T H E N  J = 3 : H S = 8 5 : G 0 S U B  6 4 6 0  
6 1 7 0  I F  F R = F C ( 3 , 2 )  O R  F R = F C ( 3 , 3 )  T H E N  J = 3  :  H S = 8 5  :  G O S U B  6 4 6 0  
6 1 8 0  '  
6 1 9 0  F O R  1 = 1  T O  3  :  J = l  
6 2 0 0  A D J = 1 5 0  
6 2 1 0  T E = 0  ;  S $ = G N $ ( I )  :  1 0 1 = 0  
6 2 2 0  P R I N T  # 1 , M T R $ ( I ) ; S $ ; " 2 "  :  T E = T E + 2  
6 2 3 0  P R I N T  # 1 , " I "  :  B $ = I N P U T $  ( 1 , # 1 )  :  I N T R P = A S C  ( B $ )  
6 2 4 0  S W T C H = 3 1  :  I F  I N T R P  >  3 1  T H E N  S W T C H = 9 5  
6 2 5 0  I F  T E  <  A D J  G O T O  6 3 4 0  
6 2 6 0  G $ = " + "  :  I F  S $ = " + "  T H E N  G $ = " - "  
6 2 7 0  H S = A D J  ;  G O S U B  6 4 6 0  ;  I D  1  =  1 0 1  +  1  
6 2 8 0  I F  1 0 1 = 2  A N D  A D J = 1 5 0  T H E N  A 0 j = 2 5 0  :  G O T O  6 2 1 0  
6 2 9 0  I F  1 0 1 = 2  A N D  A D J > = 2 5 0  T H E N  

I N P U T  " E N T E R  N E W  A D J  V A L U E :  " , A O J  :  G O T O  6 2 1 0  
6 3 1 0  T E = 0  
6 3 2 0  I F  S $ = " + "  T H E N  S $ = " - "  E L S E  S $ = " + "  
6 3 3 0  G O T O  6 2 2 0  
6 3 4 0  F R = S W T C H - I N T R P  
6 3 5 0  I F  F R = 1 4  O R  F R = F C ( I , 1 )  G O T O  6 4 0 0  
6 3 7 0  I F  F R = F C ( I , 2 )  O R  F R = F C ( I , 3 )  G O T O  6 4 0 0  
6 3 9 0  G O T O  6 2 2 0  
6 4 0 0  I F  S $ = G N $ ( I )  G O T O  6 4 2 0  
6 4 1 0  H S = R T ( I )  :  G $ = S $  :  G O S U B  6 4 6 0  
6 4 2 0  N E X T  I  
6 4 3 0  P R I N T  # 1 , " A X "  ;  P R I N T  # 1 , " D X "  :  P R I N T  # 1 , " E X "  
6 4 4 0  P R I N T  # 1 , " F X "  ;  P R I N T  # 1 , " G X "  :  P R I N T  # 1 , " H X "  
6 4 5 0  R E T U R N  

I 6 4 6 o  
6 4 7 0  
6 4 8 0  
6 4 9 0  I F  H S  >  9  G O T O  6 5 1 0  

6 4 7 0  P R I N T  # 1 , M T R $ ( J ) :  A $ = I N P U T $ ( 1 , # 1 )  :  C D = A S C ( A $ ) - 3 2  
6 4 8 0  I F  C D  >  7 0  G O T O  6 4 7 0  
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6 5 0 0  T N $ = C H R $ ( H S + 4 8 )  :  P R I N T  # 1 , M T R $  ( J ) ; G $ ; T N $  :  G O T O  6 5 3 0  
6 5 1 0  P R I N T  # 1 , M T R $  ( J ) ; G $ ; " 1 0 "  :  H S = H S - 1 0  
6 5 2 0  I F  H S  >  0  G O T O  6 4 7 0  
6 5 3 0  P R I N T  # 1 , M T R $ ( J ) ; " 7 "  :  A $ = I N P U T $ ( 1 , # 1 )  :  C D = A S C  ( A $ ) - 3 2  
6 5 4 0  I F  C D  0  0  G O T O  6 5 3 0  
6 5 5 0  R E T U R N  
6 5 6 0  E N D  
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XII. APPENDIX D. 

SIMULATION PROGRAM LISTING 

(KNOWN BOX SIZE DISTRIBUTIONS) 
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This program is employed to simulate the robotic palletizing opera

tions with various number of simultaneously loaded pallets (multi-pallet 

packing). The length and box proportions of a distribution run can be 

predetermined, and are part of the input to this program. The pallet 

pattern can only be changed when a new distribution run starts. 

Definition of program variables: 

TNP = total number of simultaneously loaded pallets 

DNEWTM = current time 

FILEN = current distribution/pallet pattern number used 

The definition of remaining variables can be found in the program and 

Appendix C. 
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5 1 0  S P P $  ( 2 , 1 ) = " E + 1  
5 2 0  S P N $  { 2 , 1 ) = " E - 1  
5 3 0  S P P $ ( 3 . 1 ) = " D + 1  
5 4 0  S P N $  ( 3 , 1 ) = " D - 1  
5 5 0  S P P $ ( 4 , 1 ) = " G + 1  
5 6 0  S P N $ ( 4 , 1 ) = " G - 1  
5 7 0  S P P $ ( 5 , 1 ) = " A + 1  
5 8 0  S P N $ ( 5 , 1 ) = " A - 1  
5 9 0  S P P $ ( 6 , 1 ) = " H + 1 '  
6 0 0  S P N $  ( 6 ,  
6 1 0  C O M F I L $ = " C O M 1 ; 9 6 0 0 , E , 7 . 2 , D S "  
6 2 0  C L O S E  # 1  
6 3 0  O P E N  C O M F ( L $  F O R  O U T P U T  A S  # 1  
6 4 0  C L S  ;  L O C A T E  1 0 , 1  
6 5 0  P R I N T  " M A N U A L  O P E R A T I O N "  
6 6 0  P R I N T  

S P P $  ( 2 , 2 ) = " E + 1 0 "  
S P N $  ( 2 , 2 ) = " E - 1 0 "  
S P P $ ( 3 , 2 ) = " D + 1 0 "  
S P N $  ( 3 , 2 ) = " D - 1 0 "  
S P P $ ( 4 , 2 ) = " G + 1 0 "  
S P N $ { 4 , 2 ) = " G - 1 0 "  
S P P $  ( 5 , 2 ) = " A + 5 "  
S P N $  ( 5 , 2 ) = " A - 5 "  
S P P $  ( 6 , 2 ) = " H + 1 0 "  
S P N $ ( 6 , 2 ) = " H - 1 0 "  

'  R S - 2 3 2 C  c o m m u n i c a t i o n s  

6 7 0  P R I N T  "  
6 8 0  P R I N T  "  
6 9 0  P R I N T  
7 0 0  P R I N T  "  
7 1 0  P R I N T  
7 2 0  P R I N T  "  
7 3 0  P R I N T  
7 4 0  P R I N T  

B A S E  
1 

S H L D R  
2 

E L B O W  
3  

P I T C H  
4  

R O L L  
5  

T A B L E  
6 

W  

P R E S S  0 — S L O W  S P E E D "  
9 — F A S T  S P E E D "  

P R E S S  X  T O  E X I T "  P R I N T  "  
7 5 0  X $ = I N K E Y $  
7 6 0  I F  X $ = " "  G O T O  7 5 0  

I F  X $ = " 9 "  T H E N  I N D E X = 2  
I F  X $ = " 0 "  T H E N  I N D E X = 1  
I F  X $ = " X "  G O T O  1 0 4 0  
I F  X $  0  " 1 "  G O T O  8 2 0  

P R I N T  # 1 , S P P $ ( 1 , I N D E X )  :  G O T O  7 5 0  
8 2 0  I F  X $  0  " Q "  G O T O  8 4 0  
8 3 0  P R I N T  # 1 , S P N $ ( 1 , I N D E X )  :  G O T O  7 5 0  

I F  X $  0  " 2 "  G O T O  8 6 0  
P R I N T  # 1 , S P P $ ( 2 , I N D E X )  :  G O T O  7 5 0  

I F  X $  0  " W "  G O T O  8 8 0  
P R I N T  # 1 , S P N $ ( 2 , I N D E X )  ;  G O T O  7 5 0  

8 8 0  I F  X $  0  " 3 "  G O T O  9 0 0  
8 9 0  P R I N T  # 1 , S P P $  ( 3 , I N D E X )  :  G O T O  7 5 0  

I F  X $  0  " E "  G O T O  9 2 0  
P R I N T  # I , S P N $ ( 3 , I N D E X )  :  G O T O  7 5 0  

I F  X $  0  " 4 "  G O T O  9 4 0  
P R I N T  # 1 , S P P $ ( 4 , I N D E X )  :  G O T O  7 5 0  

I F  X $  0  " R "  G O T O  9 6 0  
P R I N T  # 1 , S P N $ ( 4 , I N D E X )  :  G O T O  7 5 0  

I F  X $  0  " 5 "  G O T O  9 8 0  
P R I N T  # 1 , S P P $ { 5 , I N D E X )  ;  G O T O  7 5 0  

I F  X $  0  " T "  G O T O  1 0 0 0  
P R I N T  # 1 . S P N $ ( 5 , I N D E X )  :  G O T O  7 5 0  
I F  X $  0  " 6 "  G O T O  1 0 2 0  

770 
780 
790 
8 0 0  
810 

8 4 0  
8 5 0  
860 
8 7 0  

900 

9 1 0  
9 2 0  
930 

940 

950 
9 6 0  
970 
9 8 0  
990 
1 0 0 0  
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1 0 1 0  P R I N T  # 1 , S P P $ ( 6 , I N D E X )  :  G O T O  7 5 0  
1 0 2 0  I F  X $  < >  " Y "  G O T O  7 5 0  
1 0 3 0  P R I N T  i f l , S P N $  ( 6 ,  I N D E X )  :  G O T O  7 5 0  
1 0 4 0  C L S  
1050 ' 
1 0 6 0  '  s e t  u p  p a r a m e t e r s  
1 0 7 0  '  
1 0 7 5  N P T T N = 2 0  
1 0 8 0  F O R  1 = 1  T O  N P T T N  
1 0 9 0  P R I N T  " E N T E R  D I S T .  N U M B E R  O F  S E Q U E N C E  I  :  I N P U T  D S E Q ( I )  
1 1 0 0  N E X T  I  
1 1 1 0  I N P U T  " E N T E R  L E N G T H  O F  A  D I S T :  " , Q 0  :  Q 1 = Q 0  
1 1 2 0  I N P U T  " T O T A L  N U M B E R  O F  P A L L E T S :  " ; T N P  
1 1 3 0  A N G L = » 3 6 0 / T N P  
1 1 4 0  M T R $ ( 1 ) = " F "  :  M T R $ ( 2 ) = " E "  ;  M T R $ ( 3 ) = " D "  :  M T R $  ( 4 )  = " A "  
1 1 5 0  I N D E X = 1  :  Z 0 $ = " 6 "  :  Z l = 6  ;  Z 2 = 9 5 - Z 1  
1 1 6 0  C N Y H = 3 . 7 5  :  S T 0 R A G E H = O !  :  T A B L E H = 7 l  
1 1 7 0  H = 1 0 . 8  :  L = 9  :  L L - é . 2 5  
1 1 8 0  P 1 = 3 . 1 4 1 5 9  :  C = 1 8 0 I / P I  ;  P = - 9 0 / C  :  R = 0  
1 1 9 0  S F = 2 6 2 0 A C / 3 6 0  ;  S E = 3 1 4 4 i V C / 3 6 0  :  S D = S E  
1 2 0 0  S C = 4 5 4 1  . 3 ' ' < C / 3 6 O  :  S A = 4 . 1 6 6 7 * 0  
1 2 1 0  F O R  1 = 1  T O  4  :  S T 0 V F L ( l ) = 0  ;  N E X T  I  
1 2 2 0  N D I S T = 0  :  C C T 2 = 0  :  N C L D 2 = 0  :  C P R T M = 0  :  0 P T S 2 = 0  
1 2 3 0  D A T E $ = " 1 - 1 - 1 9 8 6 "  :  T I M E $ = " 0 0 ; 0 0 : 0 0 "  
1 2 4 0  F O R  J = 1  T O  4  
1 2 5 0  N I Q ( J ) = 0  :  C T M 2 ( J ) = 0  :  N M A X 2 ( J ) = 0  :  N T T L E 2 ( J ) = 0  :  N G E S 2 ( J ) = 0  
1 2 6 0  N E X T  J  
1 2 7 0  H Z = 1 2 . 5  :  A F = 1 . 5  :  N N = 1  ;  P R C T G = O I  
1280 '  
1 2 9 0  '  b o x  d i m e n s i o n s  a n d  
1 3 0 0  '  i n i t i a l  a n d  e x t r e m e  p o s i t i o n s  o f  s t o r a g e s  
1310 ' 
1 3 2 0  W H ( 1 ) = 1 . 2  ;  L H ( 1 )  =  1 . 2  :  H T ( 1 )  =  1  
1 3 3 0  W H ( 2 ) = 2 . 2  ;  L H ( 2 ) = 1 . 2  :  H T ( 2 ) = 1  
1 3 4 0  W H ( 3 ) = 2 . 2  ;  L H ( 3 ) = 2 . 2  :  H T ( 3 )  = 2  
1 3 5 0  W H ( 4 ) = 3 . 2  :  L H ( 4 ) = 2 . 2  :  H T ( 4 ) = 1  
1 3 5 5  '  
1 3 6 0  I X ( 1 ) = 9 . 5  :  I Y ( 1 ) = 6  :  I Z  ( 1 )  = S T 0 R A G E H + 1  
1 3 7 0  I X  ( 2 ) = 1 2 . 5  :  I Y  ( 2 ) = 6  ;  I Z  ( 2 ) = S T 0 R A G E H + 1  
1 3 8 0  I X  ( 3 ) = 5  :  I Y  ( 3 ) = 1 0  :  I Z  ( 3 ) = S T 0 R A G E H + 2  
1 3 9 0  I X  ( 4 )  =  1 . 5  :  I  Y  ( 4 )  =  1 0  :  I Z  ( 4 ) = S T 0 R A G E H + 1  
1 4 0 0  L X ( 1 )  =  1 0 . 7  :  L Y ( 1 ) = 1 0 . 8  :  L Z  ( 1 )  = S T 0 R A G E H + 4  
1 4 1 0  L X ( 2 ) = 1 2 . 5  :  L Y ( 2 ) = 1 0 . 8  :  L Z  ( 2 )  = S T 0 R A G E H + 4  
1 4 2 0  L X ( 3 ) = 7 . 2  :  L Y ( 3 ) = 1 2 . 2  :  L Z  ( 3 )  = S T 0 R A G E H + 8  
1 4 3 0  L X ( 4 ) = 1 . 5  :  L Y ( 4 )  =  1 2 . 2  ;  L Z  ( 4 )  = S T 0 R A G E H + 4  
1 4 4 0  F O R  J = 1  T O  4  
1 4 5 0  S A ( J , 1 )  =  I X ( J )  :  S A  ( J , 2 )  = 1 Y  ( J )  :  S A  ( J , 3 )  = 1  Z ( J )  
1 4 6 0  N E X T  J  
1470 ' 
1 4 8 0  L N G T H = I N T ( Q O / 2 0 0 )  ;  L G T H 1 = Q 0 - L N G T H A 2 0 0  
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1 4 9 0  I F  L N G T H A 2 0 0  < >  Q O  T H E N  L N G T H - L N G T H + 1  
1 5 0 0  F O R  J = 1  T O  L N G T H  
1 5 1 0  Q N ( J ) = 2 0 0  :  I F  J = L N G T H  A N D  L G T H l  >  0  T H E N  Q N ( J ) = L G T H 1  
1 5 2 0  N E X T  J  
1530 ' 
1 5 4 0  '  r o b o t  m o v e m e n t  t i m e s  ( i n  s e c o n d s )  
1550 ' 
1 5 6 0  M T 1 = 2  :  M T 2 = 3  :  M T 5 B = 2  :  M T 7 = 3  :  M T 8 = 3  
1 5 7 0  M T 3 ( 1 ) = 6  :  M T 3 ( 2 ) = 6  ;  M T 3 ( 3 ) " 7  :  M T 3 ( 4 ) = 9  
1 5 8 0  M T 4 A ( 1 , 2 ) = > 6  :  M T 4 A ( 1 , 3 ) = 6  :  M T 4 A ( 1 , 4 ) = 7  
1 5 9 0  M T 4 A ( 2 , 1 ) = 6  :  M T 4 A ( 2 , 3 ) = 6  :  M T 4 A ( 2 , 4 ) = 8  
1 6 0 0  M T 4 A ( 3 , 1 ) = 6  :  M T 4 A ( 3 , 2 ) = 6  :  M T 4 A ( 3 , 4 ) = 5  
1 6 1 0  M T 4 A ( 4 , 1 ) = 7  :  M T 4 A ( 4 , 2 ) = 8  :  H T 4 A ( 4 , 3 ) = 5  
1 6 2 0  M T 4 B ( 1 ) = 7  :  M T 4 B ( 2 ) = 7  :  M T 4 B ( 3 ) = 8  :  M T 4 B  ( 4 )  = 9  
1 6 3 0  M T 5 A ( 1 ) = 2  :  M T 5 A ( 2 ) = 2  :  M T 5 A  ( 3 )  = 4  :  M T 5 A ( 4 ) = 5  
1 6 4 0  '  
1 6 5 0  '  p i c k - u p  p o s i t i o n s  o f  v a r i o u s  b o x  t y p e s  
1 6 6 0  '  
1 6 7 0  X = 9  :  Y = 0  :  Z = I 3 « 5 5  :  G O S U B  4 9 7 0  :  '  h o m e  p o s i t i o n  
1 6 8 0  I P ( 1 ) = T 1  :  I P ( 2 ) = T 2  :  I P  ( 3 )  » T 3  :  I P ( 4 ) = T 4  :  I P ( 5 ) = A N G L E  
1 6 9 0  X = 1 2  :  Y = - 2  :  Z = 1 2  :  G O S U B  4 9 7 0  :  '  p t .  a b o v e  p i c k - u p  p o s .  
1 7 0 0  P 1 ( 1 ) = T 1  :  P 1 ( 2 ) = T 2  :  P 1 ( 3 ) = T 3  :  P 1 ( 4 ) = T 4  :  P 1 ( 5 ) = A N G L E  
1 7 1 0  X = 1 1 . 5  :  Y = - 1 . 5  :  Z = C N Y H + 1  :  G O S U B  4 9 7 0  :  '  p o s .  o f  t y p e  1  
1 7 2 0  P 2 ( 1 , 1 ) = T 1 :  P 2 ( 1 , 2 ) = T 2 :  P 2 ( 1 , 3 ) = T 3 :  P 2 ( 1 , 4 ) = T 4 :  P 2  ( 1 , 5 )  = A N G L E  
1 7 3 0  X = 1 2  :  Y = - 1 . 5  :  Z = C N Y H + 1  :  G O S U B  4 9 7 0  :  '  p o s .  o f  t y p e  2  
1 7 4 0  P 2 ( 2 , 1 ) = T 1 :  P 2 ( 2 , 2 ) = T 2 :  P 2 ( 2 , 3 ) = T 3 :  P 2 ( 2 , 4 ) = T 4 :  P 2  ( 2 , 5 )  = A N G L E  
1 7 5 0  X = 1 2  ;  Y = - l  :  Z = C N Y H + 2  :  G O S U B  4 9 7 0  :  '  p o s .  o f  t y p e  3  
1 7 6 0  P 2 ( 3 , 1 ) = T 1 :  P 2 ( 3 , 2 ) = T 2 :  P 2 ( 3 , 3 ) = T 3 :  P 2 ( 3 , 4 ) = T 4 :  P 2  ( 3 , 5 )  = A N G L E  
1 7 7 0  X = 1 2 . 5  :  Y = - l  :  Z = C N Y H + 1  z G O S U B  4 9 7 0  :  '  p o s .  o f  t y p e  4  
1 7 8 0  P 2 ( 4 , I ) = T 1 :  P 2 { 4 , 2 ) = T 2 :  P 2 ( 4 , 3 ) = T 3 :  P 2  ( 4 , 4 ) = T 4 :  P 2  ( 4 , 5 )  « A N G L E  
1 7 9 0  F O R  J = 1  T O  5  :  C ( J ) = P 1  ( J ) - I P ( J )  :  N E X T  J  
1 0 0 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  5 2 0 0  
1 8 1 0  D T = M T 1  :  G O S U B  7 4 5 0  
1820 ' 

1 8 3 0  '  b o x  p r o p o r t i o n s  
1 8 4 0  '  
1 8 5 0  R A N G E  ( 1 , 1 ) = 0  :  R A N G E  ( 1 , 2 )  = 1 / 3  :  R A N G E  ( 1 , 3 )  = 1 / 3  :  R A N G E  ( 1 , 4 )  = 1 / 3  
i 8 6 0  R A N G E  ( 2 , 1 ) = 0  :  R A N G E ( 2 , 2 ) = 1 / 3  :  R A N G E ( 2 , 3 ) = 2 / 3  :  R A N G E ( 2 , 4 ) = 0  
1 8 7 0  R A N G E ( 3 , 1 ) = 1 / 3  :  R A N G E ( 3 , 2 ) = 0  :  R A N G E ( 3 , 3 ) = 1 / 3  :  R A N G E  ( 3 . 4 ) = 1 / 3  
1 8 8 0  R A N G E ( 4 , 1 ) = 0  :  R A N G E  ( 4 , 2 )  = 2 / 3  :  R A N G E  ( 4 , 3 )  = 1 / 3  :  R A N G E  ( 4 , 4 )  = 0  
1 8 9 0  R A N G E  ( 5 , 1 ) = 1 / 3  :  R A N G E  ( 5 , 2 ) = 1 / 3  :  R A N G E  ( 5 , 3 )  =  1 / 3  :  R A N G E ( 5 , 4 ) = 0  
1 9 0 0  R A N G E ( 6 , 1 ) = 0  :  R A N G E  ( 6 , 2 )  = 2 / 3  :  R A N G E  ( 6 , 3 )  = 0  ;  R A N G E  ( 6 , 4 )  = 1 / 3  
1 9 1 0  R A N G E ( 7 , 1 ) = 1 / 3  :  R A N G E ( 7 , 2 ) = 0  :  R A N G E  ( 7 , 3 ) = 2 / 3  :  R A N G E ( 7 , 4 ) = 0  
1 9 2 0  R A N G E ( 8 , 1 ) = 1 / 3  :  R A N G E ( 8 , 2 ) = 1 / 3  :  R A N G E ( 8 , 3 ) = 0  : R A N G E  ( 8 , 4 ) = 1 / 3  
1 9 3 0  R A N G E ( 9 , 1 ) = 0  :  R A N G E  ( 9 , 2 )  = 1 / 3  :  R A N G E  ( 9 , 3 )  = 0  :  R A N G E  ( 9 , 4 )  = 2 / 3  
1 9 4 0  R A N G E  ( 1 0 , 1 ) = 0 :  R A N G E  ( 1 0 , 2 ) = 0 :  R A N G E  ( 1 0 , 3 ) = 1 / 3 :  R A N G E  ( 1 0 , 4 ) = 2 / 3  
1 9 5 0  R A N G E ( 1 1 , 1 ) = 1 / 3 :  R A N G E ( 1 1 , 2 ) = 2 / 3 :  R A N G E ( 1 1 , 3 ) = 0 :  R A N G E ( 1 1 , 4 ) = 0  
i 9 6 0  R A N G E  ( 1 2 , 1 ) = 0 :  R A N G E ( 1 2 , 2 ) = 0 :  R A N G E  ( 1 2 , 3 ) = 0 :  R A N G E ( 1 2 , 4 )  = 1  
1 9 7 0  R A N G E ( 1 3 , 1 ) = 1 / 3 :  R A N G E  ( 1 3 . 2 ) = 0 :  R A N G E  ( 1 3 . 3 ) = 0 :  R A N G E  ( 1 3 , 4 ) = 2 / 3  
1 9 8 0  R A N G E  ( 1 4 , 1 ) = 0 :  R A N G E ( 1 4 , 2 ) = 0 :  R A N G E ( 1 4 , 3 ) = 1 :  R A N G E ( 1 4 , 4 ) = 0  
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1 9 9 0  R A N G E ( 1 5 , I ) = 0 :  R A N G E ( 1 5 , 2 ) = 1 :  R A N G E ( 1 5 , 3 ) = 0 :  R A N G E ( 1 5 . 4 ) = 0  
2 0 0 0  R A N G E  ( 1 6 , 1 ) = 0 :  R A N G E  ( 1 6 ,  2 )  = » 0 ;  R A N G E  ( l 6 , 3 )  = 2 / 3 :  R A N G E  ( l 6 , 4 )  = 1 / 3  
2 0 1 0  R A N G E ( 1 7 , 1 ) = 2 / 3 :  R A N G E  ( 1 7 . 2 )  =  1 / 3 :  R A N G E ( 1 7 , 3 ) = 0 :  R A N G E ( 1 7 , 4 ) = 0  
2 0 2 0  R A N G E ( 1 8 , l ) = l :  R A N G E  ( 1 8 , 2 ) = 0 :  R A N G E  ( l 8 , 3 ) = 0 :  R A N G E ( 1 8 , 4 ) = 0  
2 0 3 0  R A N G E ( 1 9 , 1 ) = 2 / 3 :  R A N G E  ( 1 9 , 2 ) = 0 :  R A N G E  ( 1 9 , 3 ) = 1 / 3 :  R A N G E  ( 2 0 , 4 ) = 0  
2 0 4 0  R A N G E  ( 2 0 , 1 ) = 2 / 3 :  R A N G E  ( 2 0 , 2 ) = 0 :  R A N G E  ( 2 0 , 3 ) = 0 :  R A N G E  ( 2 0 , 4 ) = 1 / 3  
2 0 5 0  '  
2 0 6 0  P R = 1  ;  T C N T = 0  :  F 1 $ = " P L T "  :  F 3 $ = " . D A T "  
2 0 7 0  F I L E N = T N P  :  G O S U B  6 3 7 0  
2 0 0 0  C L O S E  ë k  :  O P E N  " 0 U T P U T . D A T "  F O R  O U T P U T  A S  # 4  
2 0 9 0  C L O S E  # 5  :  O P E N  " Q U E U E T S . D A T "  F O R  O U T P U T  A S  # 5  
2 1 0 0  C L O S E  # 6  :  O P E N  " Q U E U E D T . D A T "  F O R  O U T P U T  A S  # 6  
2 1 1 0  P R I N T  # 4 , " T O T A L  N U M B E R  O F  P A L L E T S :  " ; T N P  
2 1 2 0  G O S U B  6 5 0 0  :  0 L D T M 2 = D N E W T H  :  S T M 2 = D N E W T M  
2130 ' 

2 1 4 0  '  r e a d  i n p u t  d a t a  o f  a  p a l l e t  p a t t e r n  
2150 ' 
2 1 6 0  N D I S T = N D I S T + 1  ;  F  I L E N = D S E Q  ( N D I  S T )  :  G O S U B  6 3 7 0  
2 1 7 0  C L 0 S E # 3  :  O P E N  P A T T E R N $  F O R  I N P U T  A S  # 3  
2 1 8 0  C U R R Q = 1  :  Q 1 1 = Q N ( 1 )  :  F O R  J = 1  T O  Q 1 1  ;  N S E Q ( J ) = J  ;  N E X T  J  
2 1 9 0  G O S U B  6 5 0 0  :  0 L D T M 1 = 0 N E W T M  :  S T M 1 = 0 N E W T M  
2 2 0 0  I N P U T  # 3 , T Y P E , N O D E , A C T  
2210 E1=0 

2 2 2 0  F O R  J = 1  T O  T Y P E  
2 2 3 0  E 1 = E 1 + R A N G E ( F I L E N , J )  ;  P R O B  ( J )  = E  1  > * < Q 1  1  
2 2 4 0  N E X T  J  
2 2 5 0  F O R  1 = 1  T O  N O D E  
2 2 6 0  I N P U T  # 3 , T E , T Y P E ( I ) , P X ( I )  , P Y ( I )  , P Z ( I )  , P O ( l )  , M T 6 A ( I )  , M T 6 B ( I )  
2 2 7 0  N E X T  I  
2 2 8 0  F O R  1 = 1  T O  A C T  :  I N P U T  # 3 , T ( I ) , B ( I )  :  N E X T  I  
2 2 9 0  F O R  1 = 1  T O  5  :  F O R  J = 1  T O  5  :  S T A R T ( l , J ) = 0  :  N E X T  J  :  N E X T  I  
2 3 0 0  M A X = N O D E  :  I F  M A X  <  A C T  T H E N  M A X = A C T  
2310 '  
2 3 2 0  '  c o n s t r u c t  c h a i n s  
2330 ' 
2 3 4 0  F O R  1 = 1  T O  N O D E  :  P N T ( l ) = 0  :  N E X T  I  
2 3 5 0  F O R  1 = 1  T O  T N P + 1  :  F O R  J = 1  T O  M A X  
2 3 6 0  N 0 P R E ( l , J ) = 0  :  I N D E X ( l , J ) = 0  ;  I N V R ( l , J ) = 0  
2 3 7 0  N E X T  J  :  N E X T  I  
2 3 8 0  B ( A C T + 1 ) = 0  :  T ( A C T + 1 ) = 0  :  J = 1  
2 3 9 0  N O P R E  ( 1 , B ( 1 ) ) = N 0 P R E ( 1 , B ( 1 ) )  +  1  
2 4 0 0  F O R  1 = 2  T O  A C T + 1  
2 4 1 0  N O P R E  ( 1 , B ( I ) ) = N 0 P R E  ( 1 , B  ( ! ) ) + !  
2 4 2 0  I F  N O = T ( l )  G O T O  2 4 4 0  
2 4 3 0  P N T ( N O ) = J  ;  N O = T ( l )  :  J = l  
2 4 4 0  N E X T  I  
2 4 5 0  F O R  1  =  1  T O  T Y P E  :  T ( l ) = 0  :  N E X T  I  
2 4 6 0  F O R  1 = 1  T O  N O D E  
2 4 7 0  I F  T ( T Y P E ( l ) ) = 0  T H E N  S T A R T  ( 1 , T Y P E  ( I )  )  =  1  
2 4 8 0  I N D E X  ( 1 , T ( T Y P E  ( ! ) ) )  =  !  :  T ( T Y P E ( I ) )  =  I  
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2 4 9 0  N E X T  I  
2 5 0 0  F O R  1 = 1  T O  T Y P E  :  T ( l ) = 0  :  N E X T  I  
2 5 1 0  F O R  l » N O D E  T O  1  S T E P  - 1  
2 5 2 0  I N V R ( 1 , T ( T Y P E ( I ) ) ) = I  :  T  ( T Y P E  ( ! ) ) = !  
2 5 3 0  N E X T  I  :  I N D E X ( 1 , 0 ) = 0  
2 5 4 0  F O R  1 = 2  T O  T N P + 1  :  F O R  J = 0  T O  M A X  
2 5 5 0  N 0 P R E ( I , J ) = N 0 P R E ( 1 , J )  :  I N D E X  ( I  ,  J )  =  I N D E X  ( 1 ,  J )  
2 5 6 0  I N V R d  , J )  =  I N V R ( 1 , J )  
2 5 7 0  N E X T  J  :  N E X T  I  
2 5 8 0  F O R  1 = 2  T O  T N P + 1  :  F O R  J = 1  T O  T Y P E  
2 5 9 0  S T A R T ( I , J ) « S T A R T ( 1 , J )  
2 6 0 0  N E X T  J  :  N E X T  I  
2 6 1 0  F O R  1  =  1  T O  T N P  :  P A L L E T  (  I ) = N O D E  :  N E X T  I  
2620 ' 
2 6 3 0  C C T 1 = 0  :  N C L D 1 = 0  :  0 P T S 1 = 0  
2 6 4 0  F O R  J = 1  T O  4  
2 6 5 0  N M A X 1  ( J ) = N I Q ( J )  :  C T M 1 ( J ) = 0  :  N T T L E 1 ( J ) = 0  :  N G E S 1 ( J ) = 0  
2 6 6 0  D C T M ( J ) = 0  ;  D N M A X ( J ) = 0  :  D N I Q ( J ) = 0  
2 6 7 0  N E X T  
2 6 8 0  G O S U B  6 5 0 0  ;  C Y C T M = D N E W T M  
2690 ' 
2 7 0 0  '  p i c k  u p  a  b o x  f r o m  i n - f e e d i n g  c o n v e y o r  
2710 ' 
2 7 2 0  G O S U B  6 5 0 0  :  C C T 1 = C C T 1 + D N E W T M - C Y C T M  
2 7 3 0  C C T 2 = C C T 2 + D N E W T M - C Y C T M  :  C Y C T M = D N E W T M  
2 7 4 0  0 P T = 0 N E W T M  :  I N D X P = 0  
2 7 5 0  G O S U B  6 5 8 0  :  '  g e n e r a t e  b o x  t y p e  
2 7 6 0  F O R  J = I  T O  5  :  C ( J ) = P 2  ( B T , J ) - P I  ( J )  :  N E X T  J  
2 7 7 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  5 2 0 0  
2 7 8 0  ' P R I N T  # 1 , " C + 0 9 "  :  '  a c t u a t e  t h e  g r i p p e r  
2 7 9 0  G O S U B  6 4 5 0  
2 8 0 0  F O R  J = 1  T O  4  :  C ( J ) = - C ( J )  :  N E X T  J  :  G O S U B  5 2 0 0  
2 8 1 0  D T = H T 2  :  G O S U B  7 4 5 0  
2820 ' 

2 8 3 0  '  d e t e r m i n e  w h e r e  t o  p l a c e  t h e  b o x  
2 8 4 0  '  N C = 0  f o r  p a l  l e t ;  N C = 1  f o r  s t o r a g e  a r e a  
2 8 5 0  '  
2 8 6 0  G O S U B  4 0 7 0  
2 8 7 0  I F  N C = 0  G O T O  3 9 7 0  
2 8 8 0  I F  N C = 1  G O T O  2 9 1 0  
2 8 9 0  P R I N T  " E R R O R "  :  S T O P  
2900 ' 

2 9 1 0  '  p l a c e  b o x  i n t o  s t o r a g e  a r e a  
2920 ' 
2 9 3 0  I D $ = " S "  :  S A N - B T  
2 9 4 0  X = S A ( B T , 1 )  :  Y = S A ( B T , 2 )  :  Z = H Z  ;  G O S U B  4 9 7 0  
2 9 5 0  P U ( 1 ) = T 1  :  P U ( 2 ) = T 2  ;  P U ( 3 ) = T 3  :  P U  ( 4 )  = T 4  ;  P U ( 5 ) = A N G L E  
2 9 6 0  F O R  J = 1  T O  5  :  C ( J ) = P U ( J ) - P 1  ( J )  ;  N E X T  J  
2 9 7 0  C  ( 5 ) = A B S  ( C  ( 5 ) )  :  G O S U B  5 2 0 0  
2 9 8 0  X = S A ( B T , 1 )  :  Y = S A ( B T , 2 )  ;  Z = S A ( B T , 3 ) + A F  ;  G O S U B  4 9 7 0  
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2 9 9 0  P D ( 1 ) = T 1  :  P D ( 2 ) = T 2  :  P D ( 3 ) = T 3  :  P D ( 4 ) = T 4  :  P D { 5 ) = A N G L E  
3 0 0 0  F O R  J = 1  T O  5  :  C  ( J )  = » P D  ( J ) - P U  ( J )  :  N E X T  J  
3 0 1 0  C ( 5 ) = A B S ( C ( 5 ) )  ;  G O S U B  5 2 0 0  
3 0 2 0  F O R  J = 1  T O  5  :  T ( J ) = P D ( J )  :  N E X T  J  
3 0 3 0  T X = S A ( B T , 1 )  :  T Y = S A ( B T , 2 )  :  T Z = S A ( B T , 3 )  
3 0 4 0  G O S U B  5 8 3 0  :  '  s t r a i g h t  d o w n  
3 0 5 0  ' P R I N T  # 1 , " C X "  :  '  r e l e a s e  t h e  g r i p p e r  
3 0 6 0  G O S U B  6 4 5 0  
3 0 7 0  G O S U B  6 5 0 0  :  C T M l  ( B T ) = ' C T M 1  ( B T )  +  ( D N E W T M - 0 L D T M 1 )  A N I Q ( B T )  
3 0 8 0  C T M 2  ( B T ) = C T M 2 ( B T )  +  ( D N E W T M - 0 L D T M 2 ) A N  I Q  ( B T )  
3 0 9 0  D C T M ( B T ) = D C T M ( B T )  +  ( D N E W T M - 0 L D T M 1 )  A D N I Q ( B T )  
3 1 0 0  D N I Q ( B T ) = D N I Q ( B T ) + 1  :  N I  Q  ( B T )  = N  I Q  ( B T ) +  1  
3 1 1 0  0 L D T M 1 = D N E W T M  :  0 L D T M 2 = D N E W T M  
3 1 2 0  G O S U B  5 9 9 0  :  '  m o v e  s t r a i g h t  u p  
3 1 3 0  I F  N M A X l  ( B T )  <  N I Q ( B T )  T H E N  N M A X 1  ( B T ) = N I Q  ( B T )  
3 1 4 0  I F  D N M A X  ( B T )  <  D N I Q ( B T )  T H E N  D N M A X  ( B T ) = D N I Q ( B T )  
3 1 5 0  I F  N M A X 2 ( B T )  <  N I Q ( B T )  T H E N  N M A X 2  ( B T )  = N  I  Q  ( B T )  
3 1 6 0  N T T L E l  ( B T ) = N T T L E 1  ( B T ) + 1  :  N T T L E 2  ( B T )  = N T T L E 2  ( B T ) + 1  
3 1 7 0  F O R  J = 1  T O  5  :  C ( J ) = > P U ( J ) - P D ( J )  ;  N E X T  J  
3 1 8 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  5 2 0 0  
3 1 9 0  D T = M T 3 ( B T )  :  G O S U B  7 4 5 0  
3200 ' 
3 2 1 0  '  u p d a t e  n e x t  p l a c e m e n t  l o c a t i o n  i n  s t o r a g e  
3220 ' 
3 2 3 0  S A ( B T , 1 ) = S A ( B T , 1 ) + W H ( B T )  
3 2 4 0  I F  S A ( B T , 1 )  < =  L X  ( B T )  G O T O  3 4 2 0  
3 2 5 0  S A ( B T ,  1 )  =  I X ( B T )  ;  S A  ( B T ,  2 )  = S A  ( B T ,  2 ) + L H  ( B T )  
3 2 6 0  I F  S A ( B T , 2 )  < =  L Y ( B T )  G O T O  3 4 2 0  
3 2 7 0  S A ( B T , 2 ) = I Y ( B T )  :  S A  ( B T ,  3 )  = S A  ( B T ,  3 ) + H T  ( B T )  
3 2 8 0  I F  S A ( B T , 3 )  < =  L Z ( B T )  G O T O  3 4 2 0  
3290 ' 
3 3 0 0  '  s t o r a g e  o v e r f l o w  
3 3 1 0  '  ( i n f i n i t e  s t o r a g e  c a p a c i t y  i s  a s s u m e d )  
3320 ' 
3 3 3 0  ' P R I N T  " S T O R A G E  O V E R F L O W "  :  P R I N T  :  P R I N T  " C L E A N  T H E  S T O R A G E "  
3 3 4 0  ' F O R  J = 1  T O  3  :  P L A Y  " C + L 2 "  :  N E X T  J  
3 3 5 0  ' P R I N T  ;  P R I N T  " E N T E R  A N Y  K E Y  T O  C O N T I N U E  "  :  I N P U T  K Y $  :  C L S  
3 3 6 0  S A ( B T ,  1 )  =  I X ( B T )  :  S A  ( B T ,  2 )  = 1  Y  ( B T )  :  S A  ( B T ,  3 )  = 1  Z  ( B T )  
3 3 7 0  S T 0 V F L ( B T ) = S T 0 V F L ( B T )  +  1  
3 3 8 0  ' F O R  J = 1  T O  5  :  C ( J ) = P 1  ( J ) - P U ( J )  :  N E X T  J  
3 3 9 0  ' C  ( 5 ) = A B S  ( C  ( 5 ) )  :  G O S U B  5 2 0 0  
3 4 0 0  ' G O T O  2 7 0 0  :  '  g o  t o  p i c k - u p  p o s i t i o n  
3 4 1 0  '  
3 4 2 0  '  m o v e  o n e  b o x  f r o m  e v e r y  s t o r a g e  a r e a  a n d  
3 4 3 0  '  p l a c e  i t  o n t o  t h e  p a l l e t  
3 4 4 0  '  
3 4 5 0  P R 1 = 0  
3 4 6 0  I C U M = 0  
3 4 7 0  F O R  N = 1  T O  T Y P E  
3 4 8 0  I F  R A N G E  ( F I L E N , N ) = 0  T H E N  I C U M = I C U M + 1  ;  G O T O  3 8 6 O  
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3 4 9 0  ' I F  S A ( N , 1 )  =  I X ( N )  A N D  S A  ( N ,  2 )  =  I Y  ( N )  A N D  S A  ( N ,  3 )  =  I  Z  ( N )  T H E N  
I C U M = I C U M + 1  :  G O T O  3 8 6 0  

3 5 1 0  I F  N I Q ( N ) = 0  T H E N  I C U M = I C U M + 1  :  G O T O  3 8 6 0  
3 5 2 0  B T = N  :  G O S U B  4 0 7 0  
3 5 3 0  I F  N C = 1  T H E N  I C U M = I C U M + 1  :  G O T O  3 8 6 0  ;  '  n o  p a l l e t  s p a c e  a v a i l .  
3 5 4 0  S A ( N , 1 ) = S A ( N , 1 ) - W H ( N )  
3 5 5 0  I F  S A ( N , 1 )  > "  I X ( N )  G O T O  3 6 I O  
3 5 6 0  S A ( N , 1 ) = L X ( N )  ;  S A  ( N ,  2 )  = S A  ( N ,  2 ) - L H  ( N )  
3 5 7 0  I F  S A ( N , 2 )  > =  I Y ( N )  G O T O  3 6 I O  
3 5 8 0  S A ( N , 2 ) = L Y ( N )  :  S A  ( N ,  3 )  = S A  ( N ,  3 )  " H T  ( N )  
3 5 9 0  I F  S A ( N , 3 )  > =  I Z ( N )  G O T O  3 6 I O  
3 6 0 0  S A ( N , 1 )  =  I X ( N )  !  S A ( N , 2 ) = I Y ( N )  :  S A  ( N ,  3 )  =  I Z  ( N )  
3 6 1 0  X = S A ( N , 1 )  :  Y = S A ( N , 2 )  :  Z = H Z  :  G O S U B  4 9 7 0  
3 6 2 0  P D ( 1 ) = T 1  ;  P D ( 2 ) = T 2  :  P D ( 3 ) = T 3  :  P D ( 4 ) = T 4  :  P D  ( 5 )  « A N G L E  
3 6 3 0  F O R  J = 1  T O  5  :  C ( J ) = P D ( J ) - P U ( J )  ;  N E X T  J  
3 6 4 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  5 2 0 0  
3 6 5 0  X = S A ( N , 1 )  ;  Y = S A ( N , 2 )  ;  Z = S A ( N , 3 ) + A F  :  G O S U B  4 9 7 0  
3 6 6 0  P U ( 1 ) = T 1  :  P U ( 2 ) = T 2  ;  P U  ( 3 )  = T 3  :  P U ( 4 ) = T 4  :  P U ( 5 ) = A N G L E  
3 6 7 0  F O R  J = 1  T O  5  :  C ( J ) = P U ( J ) - P D ( J )  :  N E X T  J  
3 6 8 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  5 2 0 0  
3 6 9 0  F O R  J = 1  T O  5  :  T ( J ) = P U ( J )  :  N E X T  J  
3 7 0 0  T X = S A ( N , 1 )  ;  T Y = S A ( N , 2 )  :  T Z = S A ( N , 3 )  :  G O S U B  5 8 3 O  
3 7 1 0  ' P R I N T  # l , " C + 9 "  
3 7 2 0  G O S U B  6 4 5 0  ;  G O S U B  5 9 9 0  
3 7 3 0  F O R  J = 1  T O  5  :  C ( J ) = P D ( J ) - P U ( J )  :  N E X T  J  
3 7 4 0  C ( 5 ) = A B S ( C ( 5 ) )  :  G O S U B  5 2 0 0  
3 7 5 0  I F  I D $ = " S "  T H E N  D T = M T 4 A  ( S A N . B T )  E L S E  D T = M T 4 B  ( B T )  
3 7 6 0  G O S U B  7 4 5 0  
3 7 7 0  G O S U B  6 5 0 0  
3 7 8 0  C T M l  ( B T ) = C T M 1  ( B T )  +  ( D N E W T M - O L D T M l )  > V N  I Q  ( B T )  
3 7 9 0  C T M 2  ( B T ) = C T M 2  ( B T )  +  ( D N E W T M - 0 L D T M 2 )  A N  I Q ( B T )  
3 8 0 0  D C T M  ( B T )  = D C T M  ( B T )  +  ( D N E W T M - O L D T M l )  > V D N  I  Q  ( B T )  
3 8 1 0  N I Q ( B T ) = N I Q ( B T ) - 1  :  D N I Q  ( B T )  = D N  I Q  ( B T ) - 1  
3 8 2 0  I F  D N I Q ( B T )  <  0  T H E N  D N I Q ( B T ) = 0  
3 8 3 0  0 L D T M 1 = D N E W T M  ;  0 L D T M 2 = D N E W T M  ;  I N D X P = 0  
3 8 4 0  I D X $ = " S A "  : S A N = B T  
3 8 5 0  G O S U B  4 4 2 0  :  '  p l a c e  b o x  o n t o  p a l l e t  
3 8 6 0  N E X T  N  
3 8 7 0  I F  I  C U M  0 T Y P E  A N D  P A L L E T  ( P R ) / N O D E  < =  P R C T G  T H E N  

P R 1 = 1  :  G O T O  3 4 6 0  
3 8 9 0  G O S U B  6 5 0 0  :  0 P T = D N E W T M  
3 9 0 0  F O R  J - 1  T O  5  :  C  ( J )  = P 1  ( J ) - P U  ( J )  :  N E X T  J  
3 9 1 0  C  ( 5 )  = A B S  ( C  ( 5 )  )  :  G O S U B  5 2 0 0  
3 9 2 0  I F  I D $ = " S "  T H E N  D T = M T 5 A ( S A N )  E L S E  D T = M T 5 B  
3 9 3 0  G O S U B  7 4 5 0  
3 9 4 0  G O S U B  6 5 0 0  :  0 P T S 1 = 0 P T S 1 + D N E W T M - 0 P T  :  O P T S 2 = O P T S 2 + D N E W T M - O P T  
3 9 5 0  G O T O  2 7 0 0  :  '  g o  t o  p i c k - u p  p o s i t i o n  
3960 ' 
3 9 7 0  '  t h e  p a l l e t  
3980 ' 
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3990 INDXP"! :  IDX$="P1" 
4000 FOR J»! TO 5 :  PD(J)=P1(J) :  NEXT J 
4010 GOSUB 4420 ;  '  place box,onto pal let  
4020 GOSUB 6500 
4030 0PTS1=0PTS1+0NEWTM-0PT :  OPTS2=OPTS2+DNEWTM-OPT :  INDXP=0 
4040 GOTO 3420 :  '  move one box from every storage 
4050 END 
4060 '  
4070 '  search chain to determine box's placement locat ion 
4080 ' 
4090 T(1)=PR :  TE=PR ;  NC=0 
4100 IF TNP=1 GOTO 4l40 
4110 FOR 1=2 TO TNP 
4120 TE=TE+1 :  IF TE > TNP THEN TE=1 
4130 T(I)=TE :  NEXT I  
4140 FOR K=1 TO TNP :  TE=T (K) :  SEQ=K 
4150 SRCH=START(TE,BT) 
4160 FOR 1=1 TO NODE 
4170 IF START(TE,BT)=0 GOTO 4230 
4180 IF N0PRE(TE,SRCH)=O THEN GOTO 4260 
4190 SRCH=IND£X(TE,SRCH) 
4200 IF SRCH=0 GOTO 4230 
4210 NEXT I  
4220 IF PR1=1 GOTO 4240 
4230 NEXT K 
4240 NC=1 :  RETURN :  '  no pal let  space avai lable 
4250 ' 
4260 '  update the chain 
4270 ' 
4280 IF START (TE,BT)=SRCH THEN 

START(TE,BT)=INOEX(TE,SRCH) ;  GOTO 4320 
4300 INDEX (TE,INVR(TE,SRCH))=INDEX(TE,SRCH) 
4310 INVR(TE, INDEX (TE,SRCH))=INVR(TE,SRCH) 
4320 IF PNT(SRCH)=0 GOTO 4400 
4330 NXT=SRCH :  FOR 1=1 TO NODE :  NXT=NXT+1 
4340 IF NXT=N0DE+1 THEN NO=ACT :  GOTO 4370 
4350 IF PNT(NXT) 0  0 THEN NO=PNT (NXT) -1 :  GOTO 4370 
4360 NEXT I  :  PRINT "ERROR ON PNT" :  STOP 
4370 FOR K=PNT(SRCH) TO NO 
4380 NOPRE (TE, B (K) )  =NOPRE (TE, B (K) )  -1 
4390 NEXT K 
4400 PLTN=TE :  NC=0 ;  RETURN 
4410 '  
4420 '  place boxes onto pal let  
4430 ' 
4440 ID$="P" 
4450 IF ANGLVc(SEQ-l)  <= I80 GOTO 4470 
4460 SPN$(1,1)="-" ;  RTH=(36O/ANGL-SEQ+I)A2620/TNP :  GOTO 4480 
4470 SPN$(1,1)="+" ;  RTH=2620/TNPA(SEQ-1) 
4480 GOSUB 6070 :  ' rotate table for desired pal let  
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4490 X=PX(SRCH) :  Y=PY (SRCH) :  Z=HZ :  GOSUB 4970 
4500 PU{1)=T1 :  PU(2)=T2 :  PU(3)=T3 :  PU (4) =T4 :  PU(5)=ANGLE 
4510 FOR J=1 TO 5 :  C (J) =PU (J)-PD (J) ;  NEXT J 
4520 C(5)=ABS(C(5)) :  GOSUB 5200 
4530 IF PC (SRCH) <> 1 GOTO 4550 
4540 SPN$ (2,2)="+" :  GOSUB 6220 
4550 X=PX(SRCH) ;  Y=PY (SRCH) :  Z=PZ (SRCH)+TABLEH+AF :  GOSUB 4970 
4560 PD(1)=T1 :  PD(2)=T2 :  P0(3)=T3 :  PD(4)=T4 ;  PD(5)=ANGLE 
4570 FOR J=1 TO 5 :  C(J)"PD(J)-PU(J) :  NEXT J 
4580 C(5)=ABS(C(5)) :  GOSUB 5200 
4590 FOR J=1 TO 5 :  T(J)=PD(J) :  NEXT J 
4600 TX=PX(SRCH) :  TY=PY(SRCH) :  TZ=PZ(SRCH)+TABLEH :  GOSUB 583O 
4610 'PRINT #1,"CX" 
4620 GOSUB 6450 :  GOSUB 5990 
4630 FOR J=1 TO 5 :  C (J) =PU (J)-PD (J) :  NEXT J 
4640 C(5)=ABS(C(5)) :  GOSUB 5200 
4650 IF IDX$='"SA" THEN DT=MT6B (SRCH) ELSE DT=MT6A (SRCH) 
4660 GOSUB 7450 
4670 IF SPN$(I, ])="+" THEN SPN$(1,])="-" ELSE SPN$(1,1)="+" 
4680 GOSUB 6070 :  '  rotate table back to or iginal pal let  
4690 PALLET (PLTN)=PALLET(PLTN)-1 :  NCLD1=NCLD1 + 1 :  NCLD2=NCLD2+1 
4700 IF PC (SRCH) 0  1 GOTO 4720 
4710 SPN$ (2,2)="-" :  GOSUB 6220 
4720 IF PALLET(PLTN) <> 0 THEN RETURN 
4730 ' 
4740 '  pal let  is ful l  
4750 ' 
4760 FOR J=1 TO 5 :  C (J)=P1 (J)-PU(J) :  NEXT J 
4770 C(5)=ABS(C(5)) :  GOSUB 5200 
4780 DT=MT5B :  GOSUB 7450 
4790 IF PR=TNP THEN PR=1 ELSE PR=PR+1 
4800 N0=TNP+1 
4810 FOR J=0 TO MAX 
4820 N0PRE(PLTN,J)=N0PRE(N0,J) :  INDEX (PLTN, J) =1 NDEX (NO, J) 
4830 INVR(PLTN,J) = INVR(NO,J) 
4840 NEXT J 
4850 FOR J=1 TO TYPE :  START (PLTN,J)^START (NO,J) :  NEXT J 
4860 PALLET(PLTN) =NODE 
4870 RTH=655 
4880 SPN$ (1,1)="+" :  GOSUB 6070 ;  '  rotate turntable 
4890 'PRINT "REMOVE THE PALLET AND INSERT A NEW PALLET" :  PRINT 
4900 'PRINT "ENTER ANY KEY WHEN READY" ;  INPUT SPP$(1,1) ;  CLS 
4910 IF IN0XP=O GOTO 2700 
4920 GOSUB 6500 
4930 0PTS1=0PTS1+DNEWTM-0PT :  0PTS2=0PTS2+DNEWTM-0PT :  INDXP=0 
4940 GOTO 2700 
4950 RETURN 
4960 ' 
4970 '  coordinate transformation 
4980 '  
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4990 RR=SQR(XAX+YAY) 
5000 IF X = 0 THEN T1 =SGN (Y) >VPI/2 
5010 IF X > 0 THEN T1=ATN(Y/X) 
5020 IF X < 0 AND Y > 0 THEN T1=PI-ATN (Y/ABS(X) )  
5030 IF X < 0 AND Y < 0 THEN Tl=-(PI-ATN (Y/X)) 
5040 ANGLE=ABS(T1AC) ;  I  F X=0 THEN T4=0 ELSE T4=ATN(ABS (Y/X)) 
5050 R0=RR-LLAC0S(P) 
5060 ZO=Z-LLASIN(P)-H 
5070 IF R0=0 THEN G=SGN(Z0)API/2I ELSE G=ATN(ZO/RO) 
5080 A=ROARO+ZO*ZO 
5090 A=4ALAL/A-1 
5100 A=ABS(A) 
5110 A=ATN(SQR (A)) 
5120 T2=A+G 
5130 T3=G-A 
5140 T1 = INT(T1'VSF) 
5150 T2=INT(T2'VSE) 
5160 T3=INT(T3ASD) 
5170 T4=INT(T4ASA) 
5180 RETURN 
5190 ' 
5200 '  s imultaneous movements of  jo ints 
5210 ' 

5220 RETURN :  '  this subrout ine is not carr ied out in simulat ion 
5230 SIGN$(1)="+" :  SIGN$(2)="+" :  SIGN$(3)="+" :  SIGN$(4)="+" 
5240 IF C(I)  < 0 THEN SIGN$(1)="-" 
5250 IF C(2) >0 THEN SIGN$(2)="-" 
5260 IF C(3) <0 THEN SIGNS (3)="-" 
5270 IF C(5) <= 90 AND C(l)  <0 THEN SIGN$(4)="-" 
5280 IF C(5) <= 90 AND C(l)  >0 THEN SIGN$(4)="+" 
5290 IF C(5) >90 AND C(l)  <0 THEN SIGN$(4)="+" 
5300 IF C(5) >90 AND C(1) >0 THEN SIGN$(4)="-" 
5310 '  
5320 H0(1)=ABS(C(1)) :  H0(2)=ABS(C(2)) :  HO (3) =ABS (C (3) )  
5330 FOR J l=l  TO 2 :  L1=J1 :  JJ=J1+1 :  FOR J2=JJ TO 3 
5340 IF HO (LI)  < H0(J2) THEN L1=J2 
5350 NEXT J2 
5360 TE=H0(J1) :  H0(J1)=H0(L1) :  H0(L1)=TE 
5370 TE=IDX(J1) :  IDX (J1)=IDX(L1) ;  IDX(L1)=TE 
5380 NEXT J1 
5390 FOR 1=1 TO 3 
5400 M0$ (  I)=MTR$ ( IDX(I))  :  S0$ ( I )=SIGN$(IDX(I )  )  
5410 NEXT I  
5420 '  
5430 IF H0(1)=0 GOTO 5680 
5440 E1=0 :  C0UNT=0 :  RATE1=H0(2)/HO(1) :  RATE2=H0 (3)/HO (1) 
5450 D1=0 ;  HS=H0(1) 
5460 PRINT #1,M0$(1):  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
5470 IF CD > Z2 GOTO 5460 
5480 IF HS > Z1 GOTO 5510 
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5490 TN$=CHR$(HS+48) :  PRINT #1,M0$(1);S0$(1);TN$ 
5500 C0UNT=C0UNT+HS :  GOTO 5530 
5510 PRINT #1,M0$(1) ;S0$(1) ;Z0$ 
5520 C0UNT=C0UNT+Z1 
5530 HS-HS-Zl 
5540 IF H0(2)=0 GOTO 5640 
5550 E2=INT(C0UNTARATE1) :  TE=E2-E1 
5560 IF TE=0 GOTO 5590 
5570 E1=E2 :  TN$=CHR$ (TE+48) 
5580 PRINT #1,M0$(2);S0$ (2);TN$ 
5590 IF H0(3)=0 GOTO 5640 
5600 D2=INT(C0UNT'VRATE2) :  TE=02-OI 
5610 IF TE=0 GOTO 5640 
5620 Di=D2 :  TN$=CHR$ (TE+48) 
5630 PRINT #1,M0$(3) ;S0$(3) ;TN$ 
5640 IF HS > 0 GOTO 5460 
5650 ' 
5660 '  rot 1 the hand 
5670 ' 
5680 HS=ABS(C(4)) :  IF HS=0 GOTO 5760 
5690 PRINT#!,"A?" :  A$=l NPUT$ ( i j l )  :  CD=ASC (A$)-32 
5700 IF CD > Z2 GOTO 5690 
5710 IF HS > Z1 GOTO 5730 
5720 TN$=CHR$ (HS+48) :  PRINT #1,MTR$(4) ;SIGN$(4) ;TN$ :  GOTO 5760 
5730 PRINT #1,MTR$ (4);  SIGN$(4) ;Z0$ 
5740 HS=>HS-Z1 
5750 IF HS > 0 GOTO 5690 
5760 CD=0 
5770 FOR 1=1 TO 4 ;  PRINT #1,MTR$(I);  
5780 TN$=INPUT$(1,#1) ;  CD=CD+ASC (TN$)-32 
5790 NEXT I  
5800 IF CD 0  0 GOTO 5760 
5810 RETURN 
5820 ' 
5830 '  move the arm straight down 
5840 '  
5850 JM=AF/NN :  SZ=TZ+AF 
5860 FOR J=1 TO NN 
5870 X=TX :  Y=TY :  Z=SZ-JMAJ :  GOSUB 4970 
5880 TYPE(1)=T1 :  TYPE(2)=T2 :  TYPE(3)=T3 
5890 TYPE(4)=T4 :  TYPE (5) =ANGLE 
5900 FOR JP=I TO 5 :  JK (J,JP)=TYPE (JP)-T(JP) ;  NEXT JP 
5910 JK(J,5)=ABS(JK(J,5)) 
5920 FOR JP=1 TO 5 :  T(JP)=TYPE (JP) :  NEXT JP 
5930 NEXT J 
5940 FOR J=1 TO NN 
5950 FOR JP=1 TO 5 :  C(JP)=JK(J,JP) :  NEXT JP :  GOSUB 5200 
5960 NEXT J 
5970 RETURN 
5980 ' 
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5990 '  move the arm straight up 
6000 ' 
6010 FOR J=NN TO 1 STEP -1 
6020 FOR JP=1 TO k ;  C (JP) =-JK (J, JP) :  NEXT JP 
6030 C(5)=ABS(JK(J,5)) :  GOSUB 5200 
6040 NEXT J 
6050 RETURN 
6060 '  
6070 '  rotate the turntable 
6080 '  
6090 0T=MT7 :  GOSUB 7^50 
6100 RETURN :  ' this subrout ine is not carr ied out in simulat ion 
6110 HS=RTH 
6120 PRINT :  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
6130 IF CD > 85 GOTO 6120 
6140 IF HS >= 10 GOTO 6I6O 
6150 TN$=CHR$ (HS+48) :  PRINT #1,"H";SPN$ (1,1);TN$ ;  GOTO 6I8O 
6160 PRINT #1,"H";SPN$ (1,1) ;"10" :  HS=HS-10 
6170 IF HS > 0 GOTO 6120 
6180 PRINT :  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
6190 IF CD 0  0 GOTO 6180 
6200 RETURN 
6210 ' 

6220 '  rotate the hand to change box's or ientat ion 
6230 '  
6240 DT=MT8 :  GOSUB 7450 
6250 RETURN :  '  this subrout ine is not carr ied out in simulat ion 
6260 HS=375 
6270 PRINT#],"A?" ;  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
6280 IF CD > 85 GOTO 6270 
6290 IF HS >= 6 GOTO 6310 
6300 TN$=CHR$ (HS+48) :  PRINT #1,"A";SPN$ (2,2) ;TN$ :  GOTO 6330 
6310 PRINT #1,"A":SPN$(2,2) ;"6" :  HS=HS-6 
6320 IF HS > 0 GOTO 6270 
6330 PRINT #1,"A?" :  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
6340 IF CD 0  0 GOTO 6330 
6350 RETURN 
6360 '  
6370 '  convert number to characters for input f i le name 
6380 '  
6390 IF FILEN < 10 THEN F2$=CHR$(FILEN+48) ;  GOTO 6420 
6400 E1 = INT(FILEN/10) :  R10$=CHR$ (El+48) 
6410 E2=FILEN-E1A10 :  R01 $=CHR$ (E2+48) :  F2$=>R10$+R01 $ 
6420 PATTERN$=F1$+F2$+F3$ 
6430 RETURN 
6440 '  
6450 '  delay for picking up and placing a box 
6460 '  
6470 FOR J=1 TO 500 :  E1=SQR(2) :  NEXT J 
6480 RETURN 
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6490 '  

6500 '  obtain current t ime 
6510 '  
6520 SNAP1$=DATE$ :  SNAP2$=TIHE$ 
6530 DNEWTM=VAL (MID$ (SNAPl $ ,4,2) ) 'V86400l+VAL (LEFT$ (SNAP2$, 2) )  >'«3600! 
6540 ONEWTM=DNEWTM+VAL(MID$ (SNAP2$,4,2))^601 
6550 DNEWTM=DNEWTM+VAL (RIGHT$ (SNAP2$,2))-864001 
6560 RETURN 
6570 ' 
6580 '  generate box type (one box at a t ime) 
6590 ' 
6600 E1=INT(RND>VQII)+I 
6610 FOR J=1 TO TYPE 
6620 IF NSEQ(E1)<=»PR0B (J) THEN BT=J :  GOTO 665O 
6630 NEXT J 
6640 PRINT "ERROR ON BT" 
6650 NGESl (BT)=NGES1(BT) + 1 :  NGES2 (BT) =NGES2(BT)+1 
6660 'FOR J=1 TO BT :  PLAY "G+L6" :  NEXT J 
6670 'CLS :  E9=350 :  E2=30 
6680 'FOR J=1 TO BT ;  CIRCLE (E9,E2),20,BT :  PAINT (E9,E2),BT 
6690 'E2=E2+35 :  NEXT J 
6700 NSEQ(E1)=NSEQ(Q11) :  Q11=Q11-1 
6710 IF Ql l  00 THEN GOTO 678O 
6720 CURRQ=CURRQ+1 :  IF CURRQ > LNGTH GOTO 678O 
6730 Q11=QN (CURRQ) :  FOR J=1 TO Ql l  :  NSEQ(J)=J :  NEXT J 
6740 E1=0 

6750 FOR J=>I TO TYPE 
6760 E1=E1+RANGE (FILEN.J) :  PROB (J)=E1AQl1 
6770 NEXT J 
6780 Q1=Q1-1 
6790 IF Q1 MOD 5 <> 0 OR Q1 < 5 GOTO 686O 
6800 PRINT#5,"QUEUE AT " ;Q0-Q1;":  NIQ(1);NIQ (2);NIQ (3);NIQ(4) 
6810 PRINT#6,"QUEUE AT " ;Q0-Q1;":  " ;DNIQ (1);DNIQ(2);DNIQ (3):DNIQ (4) 
6820 ' 
6830 '  end of a dist .  run i f  Q1=0. del iver stat ist ics and 
6840 '  read data of a pal let  pattern for the next dist .  
6850 '  
6860 IF Q1 00 THEN RETURN 
6870 Q1=Q0 :  GOSUB 65OO :  PRTTM=DNEWTM 
6880 FOR J=1 TO 4 :  CTM1(J)=CTM1(J) + (DNEWTM-0LDTM1)*NIQ(J) 
6890 OCTM(J)=DCTM(J) + (DNEWTM-OLDTM1)ADNIQ(J) :  NEXT J 
6900 ' 

6910 '  del iver stat ist ics of a distr ibut ion run 
6920 ' 
6930 PRINT#4,"AAASTATISTICS OF DISTRIBUTION; " ;FILEN 
6940 PRINT#5,"**APALLET PATTERN; " ;FILEN 
6950 PRINT#6,">>>PALLET PATTERN: " ;FILEN 
6960 PRINTA,"TOTAL NUMBER OF CARTONS LOADED TO THE PALLET: " ;NCLD1 
6970 PRINT#4,"TOTAL SIMULATION TIME (DIST); ";DNEWTM-STMl 
6980 PRINTA, "AVERAGE CYCLE TIME (PICK-UP): " ;CCT1/Q0 
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6990 PRINT#4,"OPERATION TIME IN STORAGE AREA: ";DNEWTM-STM1-OPTS 1 
7000 FOR J=1 TO 4 
7010 PR INT#4,"CUMULATIVE TIME AREA: J,CTMI (J),OCTM (J) 
7020 AVE1=CTM1(J)/(DNEWTM-STM1) :  AVE2=DCTM(J)/(DNEWTM-STMl) 
7030 PR INT#4,"AVERAGE CONTENTS: " ;  J,AVE 1 ;AVE2 
7040 IF NTTLEl (J)=0 THEN 

PR INT#4,"AVERAGE WAITING TIME: " ;J,0,0 ;  GOTO 708O 
7060 AVE1=CTM1 (J)/NTTLE1 (J) :  AVE2=DCTM(J)/NTTLE1 (J) 
7070 PRINTA,"AVERAGE WAITING TIME: "  ;  J, AVE 1 ;  AVE2 
7080 PRINT#4,"TOTAL CARTONS ENTERED: " ;J,NGES1(J) 
7090 PRINT#4,"MAXIMUM CONTENTS: J.NMAXI (J).ONMAX (J) 
7100 PRINTA,"TOTAL ENTRIES: J,NTTLEl (J) 
7110 PRINT#4,"ZER0 ENTRIES: " ;J,NGES1 (J)-NTTLEl (J) 
7120 PRINT#4,"CURRENT CONTENTS: " ;  J,NIQ(J) ,DNIQ (J) 
7130 PRINT#4,"PROPORTIONS: " ;J,  RANGE (FILEN,J) 
7140 NEXT J 
7150 GOSUB 6500 
7160 IF NDISTONPTTN THEN CPRTM=CPRTM+(DNEWTM-PRTTM) :  GOTO 2l60 
7170 FOR J=1 TO 4 
7180 CTM2 (J) =CTM2 (J) + (PRTTM-0LDTM2) >'<N I  Q (J) -CPRTM 
7190 NEXT J 
7200 ' 
7210 '  del iver stat ist ics of total  simulat ion 
7220 ' 
7230 PRINT#4',"»>STATISTICS OF TOTAL SIMULATION" 
7240 PRINT#4,"TOTAL NUMBER OF CARTONS LOADED TO THE PALLET; ";NCLD2 
7250 PRINT#4,"TOTAL SIMULATION TIME (ENTIRE): ";PRTTM-STM2 
7260 PRINTS,"AVERAGE CYCLE TIME (PICK-UP): "  ;  CCT2/(QO^NPTTN) 
7270 PRINTA,"OPERATION TIME IN STORAGE AREA: "  ;PRTTM-STM2-0PTS2 
7280 FOR J=1 TO 4 
7290 PRINT#4,"CUMULATIVE TIME AREA: " ;J,CTM2(J) 
7300 PR INT#4."AVERAGE CONTENTS: " ;  J,CTM2(J)/(PRTTM-STM2) 
7310 IF NTTLE2(J)=0 THEN 

PRINTS,"AVERAGE WAITING TIME: " ;J,0,0 ;  GOTO 7340 
7330 PR INT#4,"AVERAGE WAITING TIME: J,CTM2(J)/NTTLE2 (J) 
7340 PRINT#4,"TOTAL CARTONS ENTERED: " ;J,NGES2(J) 
7350 PRINT#4,"MAXIMUM CONTENTS: " ;J,NMAX2(J) 
7360 PRINT#4,"TOTAL ENTRIES: " ;J,NTTLE2 (J) 
7370 PRINT#4,"ZER0 ENTRIES: " ;  J,NGES2(J)-NTTLE2 (J) 
7380 PRINTS,"NUMBER OF OVERFLOWS: " ;  J.STOVFL (J) 
7390 PRINT#4,"CURRENT CONTENTS: " ;J,NIQ(J) 
7400 NEXT J 
7410 CLS :  PRINT "READ OUTPUT.OAT" 
7420 PRINT "READ QUEUETS.DAT" ;  PRINT "READ QUEUEDT.DAT" 
7430 END :  RETURN 
7440 '  
7450 '  delay for robot movement t ime 
7460 '  
7470 GOSUB 6500 :  DT=DNEWTM+DT 
7480 GOSUB 6500 :  TE=DNEWTM 
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XIII. APPENDIX E. 

SIMULATION PROGRAM LISTING 

(UNKNOWN BOX SIZE DISTRIBUTIONS) 
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This program Is employed to simulate the robotic palletizing opera

tions with alternate values of look-ahead factors. The length and box 

proportions of a distribution run cannot be determined before palletizing 

starts. Whenever a pallet is full, the dynamic selection procedure is 

executed to determine the best "match" pallet pattern according to the 

boxes on the in-feeding conveyor. 

Definition of program variables: 

FCT = the look-ahead factor 

NBOX = cumulative number of boxes placed of a distribution 

ahead queue 
NTYPE(i,j) = number of boxes of size j in pallet pattern //i 

QTYPE(j) = cumulative number of boxes of size j in the look-

ahead queue 

BRATXO(i) = cumulative deviations of box ratio for pallet 

pattern #i 

CHECK(i) = group number of pallet pattern #i 

NBSEQ(i) = sequence of box size numbers generated by the 

random number generator 

The remaining variables have been defined in Appendixes C and D. 

TVOL 

TBOX 

run 

cumulative box volumes in the look-ahead queue 

cumulative number of boxes of all sizes in the look-
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10 ' }V)V>V>'<A9'<yc}Vfcj'<>'c>'c)'<>VsV)V>'<>'<>'c)'<j'c>VjV»'»'<}'<>V/<)V}'c)'t>'cs'c>V>V)V>V)'<V{/<}'eîV)'<!iV>VA>'(>'csW<}'cîV>VAAytA»'<)Vî'{)VA>'c 

20 ' 
30 '  Purpose -  Robotic pal let iz ing simulat ion program 
40 '  for determining look-ahead factor 
50 '  with unknown distr ibut ions 
60 '  (dynamic select ion procedure for a best 
70 '  matched pal let  pattern) 
80 ' 
90 '  Parameters -  see the def ini t ion in the previous 
100 '  program 
110 '  
1 20 '  >V »•«'«'< A A AAA A Aj'oVysjVAAj'oVyoVAs'cAjV/oViVsVi'csVAiVAiVVoV A A jV>'t)ïyc>'c>'c>VîVsV>'c>Me>V>Vs'c)bV 

130 ' 
140 DEFINI l ,N,Q 
150 DIM QTYPE (20).NBSEQ(2,200) .NTYPE(20,4) 
160 DIM MT3 (4) ,  MT4A (4,4),  MT4B (4) ,  MT5A (4) ,  MT6A (66) ,  MT6B (66) 
170 DIM BV(4) .CHECK (20) ,BRATI0(20) ,NSEQ(200) ,RANGE (20,4) 
100 DIM IX(4) , IY(4) , IZ(4) ,LX(4) ,LY(4) ,LZ(4) ,LH(4) ,WH(4) ,HT(4) 
190 DIM IP(5) .PI (5) ,P2(4,5) ,PU(5) .PD(5) ,SA(4,3) ,JK(10.5) 
200 DIM PALLET(4).NOPRE(5,66), INDEX (5.66), INVR(5,66),PR0B(4) 
210 DIM TYPE (66) ,T(66) .8 (66) .PNT(66) .START (5,5) .STOVFL (4) 
220 DIM PX (66) ,  FY (66) ,  PZ (66) .  PO (66) 
230 DIM SPP$(6,2),SPN$(6,2) ,MTR$(4) ,SIGN$(4) 
240 DIM C(5) .HO (3) ,  IDX(3) ,M0$ (3) ,S0$ (3) 
250 DIM NIQ(4) ,CTM1 (4) ,CTM2(4) ,DCTM(4) .NMAXl (4) ,NMAX2(4) .DNMAX(4) 
260 DIM DNIQ(4) .NTTLEI (4) ,NTTLE2(4) .NGESl (4) .NGES2(4) ,DSEQ(20) 
270 ' 
280 '  keyboard manipulat ion 
290 ' 
300 SPP$(1,1)="F+1" :  SPP$(1.2)="F+10" 
310 SPN$(1,1)="F-1" :  SPN$(1,2)="F-10" 
320 SPP$ (2.1)="E+1" :  SPP$ (2,2)="E+10" 
330 SPN$(2,1)="E-1" :  SPN$(2,2)="E-10" 
340 SPP$(3,1)="D+1" :  SPP$(3.2)="D+10" 
350 SPN$ (3, l )="D-r '  :  SPN$(3,2)="D-10" 
360 SPP$ (4, 1)="G+1" :  SPP$(4,2)="G+10" 
370 SPN$ (4.1)="G-1" :  SPN$(4.2)="G-10" 
380 SPP$(5,1)="A+1" ;  SPP$(5,2)="A+5" 
390 SPN$(5.1)="A-1" ;  SPN$(5,2)="A-5" 
400 SPP$ (6, 1)="H+1" :  SPP$(6,2)="H+10" 
410 SPN$ (6,1)="H-1" :  SPN$(6.2)="H-10" 
420 COMFIL$="C0M1:96OO.E,7,2,OS" 
430 CLOSE #1 :  OPEN COMFIL$ FOR OUTPUT AS #1 
440 CLS ;  LOCATE 10.1 
450 PRINT "MANUAL OPERATION" 
460 PRINT 
470 PRINT "  BASE SHLDR ELBOW PITCH ROLL TABLE" 
480 PRINT "  1 2 3 4 5 6 "  
490 PRINT 
500 PRINT "  Q W E R T Y "  
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510 PRINT 
520 PRINT "  PRESS 0—SLOW SPEED" 
530 PRINT "  9—FAST SPEED" 
540 PRINT :  PRINT "  PRESS X TO EXIT" 
550 X$=INKEY$ 
560 IF X$="" GOTO 550 
570 IF X$="9" THEN INDEX=2 
580 IF X$="0" THE-N INDEX=1 
590 IF X$="X" GOTO 870 
600 IF X$ 0  "1" GOTO 620 
610 PRINT #1,SPP$(1,INDEX) 
620 IF X$ 0  "Q" GOTO 640 
630 PRINT #1,SPN$(1,INDEX) 
640 IF X$ 0  "2" GOTO 66O 
650 PRINT #1,SPP$(2,INDEX) 
660 IF X$ <> "W" GOTO 680 
670 PRINT #1,SPN$(2,INDEX) 
680 IF X$ 0  "3" GOTO 700 
690 PRINT #1,SPP$(3,INDEX) 
700 IF X$ 0  "E" GOTO 720 
710 PRINT #1,SPN$(3,INDEX) 
720 IF X$ 0  "4" GOTO 740 
730 PRINT #1,SPP$(4,INDEX) 
740 IF X$ 0  "R" GOTO 760 
750 PRINT #'1,SPN$ (4, INDEX) 
760 IF X$ 0  "5" GOTO 780 
770 PRINT #1,SPP$(5.INDEX) 
780 IF X$ 0  "T" GOTO 800 
790 PRINT #1,SPN$(5,INDEX) 
800 IF X$ 0  "6" GOTO 820 
810 PRINT #1,SPP$(6,INDEX) 
820 IF X$ 0  "Y" GOTO 550 
830 PRINT #1,SPN$(6,INDEX) 
840 '  
850 '  set up parameters 
860 ' 
870 CLS :  NPTTN=20 
880 FOR 1=1 TO NPTTN 
890 PRINT "ENTER DIST. NUMBER OF SEQUENCE " ; I  :  INPUT DSEQ(I) 
900 NEXT I  
910 INPUT "ENTER LOOK-AHEAD FACTOR (  >= 1):  ",FCT 
920 CLOSE #4 :  OPEN "OUTPUT.DAT" FOR OUTPUT AS #4 
930 CPP=0 ;  CNYH=3.75 :  STORAGEH=OI ;  TABLEH=7I 
940 TNP=1 :  PRCTG=OI 
950 MTR$(1)«"F" :  MTR$(2)="E" :  MTR$(3)="D" :  MTR$ (4) ="A" 
960 INDEX=1 ;  Z0$="6" :  Zl=6 :  Z2=95-Z1 
970 H=10.8 :  L=9 :  LL=6.25 
980 Pl=3.14159 :  C=180!/PI ;  P=-90/C ;  R=0 
990 SF=2620AC/360 :  SE=3l44AC/360 :  SD=SE 
1000 SO4541.3AC/36O :  SA=4.1667'*«C 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 

GOTO 550 
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1010 FOR 1=1 TO h :  STOVFL(I)=0 :  NEXT I  
1020 NDIST=1 :  CCT2=0 :  NCLD2=0 :  CPRTM=0 :  0PTS2=0 
1030 DATE$="1-1-1986" :  TIME$="00:00:00" 
1040 FOR J=1 TO 4 
1050 NIQ(J)=0 :  CTM2(J)=0 :  NMAX2 (J) =0 :  NTTLE2(J)=0 ;  NGES2(J)=0 
1060 NEXT J 
1070 HZ=12.5 :  AF=1.5 :  NN=1 :  Q0=200 ;  Q1=Q0 :  TYPE=4 
1080 ' 

1090 '  robot movement t imes 
1100  '  
1110 MT1=2 :  MT2=3 :  MT5B=2 :  MT7=3 :  MT8=3 
1120 HT3(1)=6 ;  MT3(2)=6 :  MT3 (3) =7 :  MT3 (4) =9 
1130 MT4A(1,2)=6 :  MT4A(1,3)=6 ;  MT4A(1,4)=7 
1140 MT4A(2,1)=6 :  MT4A(2,3)=6 :  MT4A(2,4)=8 
1150 MT4A(3,1)=6 ;  MT4A(3,2)=6 :  MT4A(3,4)=5 
1160 MT4A(4,1)=7 :  MT4A(4,2)=8 :  MT4A(4,3)=5 
1170 MT4B(1)=7 :  MT4B(2)=7 :  MT4B (3) =8 :  MT4B(4)=9 
1180 MT5A(1)=2 :  MT5A(2)=2 :  MT5A (3) =4 :  MT5A(4)=5 
1190 ' 
1200 '  box dimensions 
1210 '  
1220 WH(1)=1.2 :  LH(1)=1.2 :  HT(1)=1 
1230 WH(2)=2.2 ;  LH(2)=1.2 :  HT(2)=1 
1240 WH(3)=2.2 ;  LH(3)=2.2 :  HT (3) =2 
1250 WH(4)=3.2 :  LH(4)=2.2 :  HT(4)=1 
1260 '  
1270 '  in i t ia l  6 extreme pos. of storage areas 
1280 '  
1290 IX(1)=9.5 ;  I  Yd) =6 :  IZ(1)=ST0RAGEH+1 
1300 IX(2)=12.5 :  IY (2)=6 :  IZ(2) =ST0RAGEH+1 
1310 IX (3) =5 :  IY (3) =10 :  I  Z (3) =ST0RAGEH+2 
1320 IX (4)=1.5 :  IY(4)=10 :  IZ(4) =ST0RAGEH+1 
1330 LX(1)=10.7 :  LY(1) = 10.8 :  LZ (1) =ST0RAGEH+4 
1340 LX(2)=12.5 :  LY(2)=10.8 :  LZ (2) =ST0RAGEH+4 
1350 LX(3)=7.2 ;  LY(3)=12.2 :  LZ (3) =ST0RAGEH+8 
1360 LX(4)=1.5 :  LY(4)=12.2 :  LZ (4) =ST0RAGEH+4 
1370 ' 
1380 '  pick-up posit ions 
1390 '  
1400 X=9 :  Y=0 :  Z=13.55 :  GOSUB 4890 ;  '  home posit ion 
1410 IP(1)=T1 :  IP(2)=T2 :  IP(3)=T3 :  IP (4) =T4 :  IP(5)=ANGLE 
1420 X=12 :  Y=-2 :  Z=12 :  GOSUB 4890 :  '  pt .  above pick-up pos. 
1430 P1(1)=T1 :  P1(2)=T2 :  P1(3)=T3 :  P1(4)=T4 :  P1(5)=ANGLE 
1440 X=11.5 :  Y=-1.5 :  Z=CNYH+1 ;  GOSUB 4890 :  '  pos. of type 1 
1450 P2(1,1)=T1 :  P2(1,2)=T2 :  P2(1,3)=T3 
1460 P2(1,4)=T4 :  P2 (1,5) =ANGLE 
1470 X=12 :  Y=-1.5 :  Z=CNYH+1 :  GOSUB 4890 :  ' pos. of type 2 
1480 P2(2,1)=T1 !  P2(2,2)=T2 :  P2(2,3)=T3 
1490 P2(2,4)=T4 :  P2 (2,5) =ANGLE 
1500 X=12 ;  Y=-1 :  Z=CNYH+2 ;  GOSUB 4890 :  ' pos. of type 3 
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1510 P2(3,1)=T1 :  P2(3,2)=T2 :  P2(3,3)=T3 
1520 P2 (3,4)=T4 :  P2 (3,5) =ANGLE 
1530 X=12.5 :  Y=-l  ;  Z=CNYH+1 :GOSUB 4890 :  ' pos. of type 4 
1540 P2(4,1)=T1 :  P2(4,2)=T2 :  P2(4,3)=T3 
1550 P2(4,4)=T4 :  P2 (4,5) "ANGLE 
1560 FOR J=1 TO 4 
1570 SA(J,1)=IX(J) ;  SA (J,2) =1Y (J) :  SA (J,  3) = IZ (J) 
1580 NEXT J  
1590 FOR J=1 TO 5 :  C(J)=>P1 (J)-IP(J) :  NEXT J :  C (5) =ABS (C (5) )  
1600 GOSUB 5120 :  DT=MT1 :  GOSUB 7270 
1 6 1 0  '  

1620 '  box proport ions 
1630 ' 
1640 RANGE (1,1)=0 :  RANGE (1,2) =1/3 :  RANGE (1,3) =1/3 :  RANGE (1,4) =1/3 
1650 RANGE (2, 0=0 :  RANGE (2,2) =1/3 :  RANGE (2,3) =2/3 :  RANGE (2,4) =0 
1660 RANGE(3,1)=1/3 :  RANGE(3,2)=0 :  RANGE(3,3)=1/3 :  RANGE(3,4)=1/3 
1670 RANGE (4, 0=0 :  RANGE (4,2) =2/3 :  RANGE (4,3) =1/3 :  RANGE (4,4) =0 
1680 RANGE (5, 0=1/3 :  RANGE (5,2) = 1/3 :  RANGE (5, 3) =1/3 :  RANGE (5,4) =0 
1690 RANGE(6,1)=0 :  RANGE (6,2) =2/3 :  RANGE (6,3) =0 ;  RANGE (6,4) = 1/3 
1700 RANGE (7,0=1/3 :  RANGE (7,2) =0 :  RANGE (7,3) =2/3 :  RANGE (7,4) =0 
1710 RANGE (8, 0=1/3 :  RANGE (8,2) = 1/3 :  RANGE (8,3) =0 :RANGE (8,4) =1/3 
1720 RANGE (9,0=0 ;  RANGE (9,2) =1/3 :  RANGE (9,3) =0 :  RANGE (9, 4) =2/3 
1730 RANGE (10,0=0; RANGE (10,2) =0: RANGE (10,3) =1/3: RANGE (10,4) =2/3 
1740 RANGE(11,1)=1/3: RANGE(11,2)=2/3: RANGE(11,3)=0: RANGE(11,4)=0 
1750 RANGE (12,0=0: RANGE (12,2) =0: RANGE (12,3) =0: RANGE (12,4) =1 
1760 RANGE(13,1)=1/3: RANGE(13,2)=0: RANGE(13,3)=0: RANGE (13,4)=2/3 
1770 RANGE (14,0=0: RANGE (14,2) =0: RANGE (14,3) = 1: RANGE (14,4) =0 
1780 RANGE (15, 0=0: RANGE (15,2) =1 :  RANGE (15,3) =0: RANGE (15,4) =0 
1790 RANGE (16, 0=0: RANGE (16,2) =0: RANGE (16,3) =2/3: RANGE ( l6,4) =1/3 
1800 RANGE (17,0=2/3: RANGE (17,2) =1/3: RANGE (17,3) =0: RANGE (17,4) =0 
1810 RANGE (18,0=1: RANGE (18,2) =0: RANGE (18,3) =0: RANGE (18,4) =0 
1820 RANGE (19,0=2/3: RANGE (19, 2) =0: RANGE (19,3) = l /3:  RANGE (19, 4) =0 
1830 RANGE (20, 0=2/3: RANGE (20,2) =0: RANGE (20,3) =0: RANGE (20,4) =1/3 
1840 '  
1850 '  number for each box type of a pal let  pattern 
i860 '  
1870 NTYPE (1,0=0 :  NTYPE(1,2)=4 :  NTYPE(1,3)=4 :  NTYPE(1,4)=4 
1880 NTYPE (2, 0=0 :  NTYPE (2,2) =4 ;  NTYPE (2,3) =7 :  NTYPE (2,4) =0 
1890 NTYPE (3, 0=4 :  NTYPE (3,2) =0 :  NTYPE (3,3) =4 :  NTYPE (3,4) =4 
1900 NTYPE (4,0=0 :  NTYPE (4,2) =10 :  NTYPE (4,3) =5 :  NTYPE (4,4) =0 
1910 NTYPE (5,0=5 :  NTYPE (5,2) =5 :  NTYPE (5,3) =5 :  NTYPE (5,4) =0 
1920 NTYPE (6, 0=0 :  NTYPE (6,2) =12 :  NTYPE (6,3) =0 :  NTYPE (6,4) =6 
1930 NTYPE (7, 0=4 :  NTYPE (7,2) =0 :  NTYPE (7,3) =7 :  NTYPE (7,4) =0 
1940 NTYPE (8, 0=7 :  NTYPE(8,2)=7 :  NTYPE (8,3) =0 :  NTYPE (8,4) =7 
1950 NTYPE (9,0=0 :  NTYPE (9,2) =4 :  NTYPE (9,3) =0 :  NTYPE (9,4) =8 
i960 NTYPE (10,0=0: NTYPE (10,2) =0: NTYPE (10,3) =2: NTYPE (10,4) =4 
1970 NTYPE (11, 0=12: NTYPE (11,2) =25: NTYPE (11,3) =0: NTYPE (11,4) =0 
1980 NTYPE(12,1)=0: NTYPE(12,2)=0: NTYPE(12,3)=0: NTYPE(12,4)=8 
1990 NTYPE(13,1)=4: NTYPE (13.2)=0: NTYPE(13,3)=0: NTYPE(13,4)=8 
2000 NTYPE (14, 0=0: NTYPE (14,2) =0: NTYPE (14,3) =8: NTYPE (14,4) =0 
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2010 NTYPE (15J)=0: NTYPE (15,2)=32: NTYPE (15.3)=0: NTYPE (15.4)=0 
2020 NTYPE (16,1)=0: NTYPE (16,2) =0: NTYPE (16,3) =4: NTYPE ( l6,4) =2 
2030 NTYPE(17.1)=32: NTYPE (17.2)=l6: NTYPE(17,3)=0: NTYPE(17.4)=0 
2040 NTYPE(18,1)=64: NTYPE (18,2)=0; NTYPE (18,3)«0: NTYPE (18,4)=0 
2050 NTYPE(19,1)=12: NTYPE (19,2)=0; NTYPE(19.3)=6: NTYPE(19.4)=0 
2060 NTYPE(20,1)=16: NTYPE (20,2)=0: NTYPE(20,3)=0: NTYPE(20,4)=8 
2070 ' 
2080 PR=1 :  F1$="PLT" :  F3$=".DAT" 
2090 PV=64 :  BV(1) = 1 :  BV (2) =2 :  BV(3)=8 :  BV(4)=6 
2100 GOSUB 6430 ;  0LDTM1=DNEWTM :  STM1=DNEWTM :  NB0X=>0 
2110 0LDTM2-DNEWTM :  STM2=DNEWTM :  GOSUB 6530 
2120 FILEN=0SEQ(1) :  GOSUB 6290 
2130 ' 
2140 '  read data of a pal let  pattern 
2150 ' 

2160 CL0SE#3 :  OPEN PATTERNS FOR INPUT AS #3 
2170 ANGL=360/TNP 
2180 INPUT #3.TYPE,NODE,ACT 
2190 FOR 1=1 TO NODE 
2200 INPUT #3.TE,TYPE ( I)  ,PX(I)  ,PY(I)  ,PZ(I)  ,PO(l)  ,MT6A ( I  )  ,MT6B (  I  ) 
2210 NEXT I  
2220 FOR 1=1 TO NODE :  PNT(l)=0 :  NEXT I  
2230 FOR 1=1 TO ACT :  INPUT #3,T(I) ,B(I)  :  NEXT I  
2240 FOR 1=1 TO 5 :  FOR J=1 TO 5 :  START(l,J)=0 :  NEXT J :  NEXT I  
2250 MAX=NODE :  IF MAX < ACT THEN MAX=ACT 
2260 ' 

2270 '  construct chains 
2280 '  
2290 FOR 1=1 TO TNP+1 :  FOR J=1 TO MAX 
2300 NOPRE ( I  ,  J) =0 :  INDEX(l,J)=0 :  INVR(I.J)=0 
2310 NEXT J :  NEXT I  
2320 B(ACT+1)=0 :  T(ACT+1)=0 :  J=1 :  N0=T(1) 
2330 NOPRE (1 ,B (1) )=N0PRE (1 ,B (1))+1 
2340 FOR 1=2 TO ACT+1 
2350 NOPRE (1 ,B ( I)  )=N0PRE (1 ,B ( l ))  + l  
2360 IF NO=T(l)  GOTO 2380 
2370 PNT(NO)=J :  NO=T(l)  :  J=l 
2380 NEXT I  
2390 FOR 1=1 TO TYPE :  T(l)=0 ;  NEXT I  
2400 FOR 1=1 TO NODE 
2410 IF T(TYPE(l))=0 THEN START (1,TYPE ( I  ))=l  
2420 INDEX (1,T (TYPE ( I)  ))  = l  :  T(TYPE(I))  = I  
2430 NEXT I  
2440 FOR 1=1 TO TYPE :  T(l)=0 :  NEXT I  
2450 FOR l=NODE TO 1 STEP -1 
2460 INVR(1,T(TYPE(I)))=I ;  T(TYPE(I))  = I  
2470 NEXT I  :  INDEX(1,0)=0 
2480 FOR 1=2 TO TNP+1 :  FOR J=0 TO MAX 
2490 NOPRE (I .J)=NOPRE (1,J) ;  INDEX(I,J) = 1NDEX (1,J) 
2500 INVR(I,J)=INVR(1,J) 
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2510 NEXT J :  NEXT I  
2520 FOR 1=2 TO TNP+1 :  FOR J=1 TO TYPE 
2530 STARTd ,J)=START(1 ,J) 
2540 NEXT J :  NEXT I  
2550 FOR 1 = 1 TO TNP :  PALLET (  I)=NODE ;  NEXT I  
2560 GOSUB 6430 :  CYCTM=DNEWTM 
2565 ' 
2570 '  pick up a box from in-feeding conveyor 
2575 ' 
2580 GOSUB 6430 :  CCT1=CCT1+DNEWTM-CYCTM 
2590 CCT2=CCT2+DNEWTM-CYCTM :  CYCTM=DNEWTM 
2600 OPT=ONEWTM :  INDXP=0 
2610 NB0X=NB0X+1 :  IF NBOX<=QO THEN BT=NBSEQ (1,NBOX) :  GOTO 2720 
2620 GOSUB 6740 
2630 GOSUB 6430 ;  0LDTM1=DNEWTM 
2640 STM1=DNEWTM ;  CCT1=0 ;  NCLD1=0 :  0PTS1=0 
2650 FOR J=l TO 4 
2660 NMAXl (J)=NIQ(J) ;  CTM1(J)=0 ;  NTTLE1(J)=0 :  NGES1(J)=0 
2670 OCTM(J)=0 :  DNMAX(J)=0 :  DNIQ(J)=0 
2680 NEXT J 
2690 NDIST=N0IST+1 :  IF NDIST > NPTTN THEN GOSUB 7OIO 
2700 NB0X=0 :  IDK=1 :  GOSUB 6530 
2710 GOSUB 7340 
2720 NGESl (BT)=NGEST1 (BT)+1 :  NGES2 (BT) =NGES2 (BT)+ 1 
2730 FOR J=1 TO 5 :  C(J)=P2(BT,J)-P1 (J) :  NEXT J 
2740 C(5)=ABS(C(5)) :  GOSUB 5120 
2750 'PRINT #l ,"C+09" :  '  actuate the gr ipper 
2760 GOSUB 6380 
2770 FOR J=1 TO 4 :  C(J)=-C(J) :  NEXT J :  GOSUB 5120 
2780 DT=MT2 ;  GOSUB 7270 
2790 ' 
2800 '  determine where to place the box 
2810 '  NC=0 for pal let ;  NC=1 for storage 
2820 '  
2830 GOSUB 4010 
2840 IF NC=0 GOTO 3910 
2850 IF NC=1 GOTO 2880 
2860 PRINT "ERROR" :  STOP 
2870 ' 
2880 '  place the box in storage area 
2890 '  
2900 ID$="S" :  SAN=BT 
2910 X=SA(BT,1) ;  Y=SA(BT,2) :  Z=HZ :  GOSUB 4890 
2920 PU(1)=T1 :  PU(2)=T2 :  PU (3) =T3 :  PU(4)=T4 ;  PU(5)=ANGLE 
2930 FOR J=1 TO 5 :  C(J)=PU(J)-P1 (J) ;  NEXT J 
2940 C(5)=ABS(C{5)) ;  GOSUB 5120 
2950 X=SA(BT,1) :  Y=SA(BT,2) :  Z=SA (BT,3)+AF :  GOSUB 4890 
2960 PD(1)=T1 ;  PD(2)=T2 :  PD (3) =T3 :  PD(4)=T4 :  PD(5)=ANGLE 
2970 FOR J=1 TO 5 :  C(J)=PD(J)-PU(J) :  NEXT J 
2980 C(5)=ABS(C(5)) :  GOSUB 5120 
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2990 FOR J=1 TO 5 :  T(J)=PD(J) :  NEXT J 
3000 TX=SA(BT,1) :  TY=SA(BT,2) :  TZ=SA(BT,3) :  GOSUB 5750 
3010 'PRINT #1,"CX" 
3020 GOSUB 6380 :  '  release the gr ipper 
3030 GOSUB 6430 :  CTMl (BT) =»CTM1 (BT) + (DNEWTM-OLDTMl) ^NIQ (BT) 
3040 CTM2(BT) =CTM2(BT) + (DNEWTM-0LDTH2)AN IQ (BT) 
3050 DCTM(BT)=DCTM (BT) + (DNEWTM-QLDTMl)ADN IQ(BT) 
3060 NIQ(BT)=NIQ(BT) + 1 ;  DN I  Q (BT) =DNI Q (BT)+ 1 
3070 0LDTM1=DNEWTM :  0LDTM2=DNEWTM 
3080 GOSUB 5910 :  '  straight up 
3090 IF NMAXl (BT) < NIQ(BT) THEN NMAXl(BT) =NIQ(BT) 
3100 IF DNMAX(BT) < ONIQ(BT) THEN DNMAX (BT) =DNIQ (BT) 
3110 IF NMAX2(BT) < NIQ(BT) THEN NMAX2 (BT) =N I  Q (BT) 
3120 NTTLEl(BT)=NTTLEl(BT) + 1 :  NTTLE2 (BT)=NTTLE2 (BT)+1 
3130 FOR J=1 TO 5 :  C(J)=PU(J)-PD(J) :  NEXT J 
3140 C(5)=ABS(C(5)) :  GOSUB 5120 
3150 DT=MT3(BT) ;  GOSUB 7270 
3160 ' 

3170 '  update placement locat ion in storage area 
3180 '  
3190 SA(BT.1)=SA(BT,1)+WH(BT) 
3200 IF SA(BT,1) <= LX(BT) GOTO 3380 
3210 SA(BT,1) = IX(BT) :  SA (BT,2) =SA (BT,2)+LH (BT) 
3220 IF SA(BT,2) <= LY(BT) GOTO 3380 
3230 SA(BT,2) = IY(BT) :  SA (BT, 3) =SA (BT, 3)+HT (BT) 
3240 IF SA(BT,3) <= LZ (BT) GOTO 3380 
3250 ' 
3260 '  storage overf low 
3270 '  ( inf ini te capacity is assumed) 
3280 '  
3290 'PRINT "STORAGE OVERFLOW — CLEAN THE STORAGE" 
3300 'FOR J=1 TO 3 :  PLAY "C+L2" ;  NEXT J 
3310 'PRINT :  PRINT "ENTER ANY KEY TO CONTINUE "  ;  INPUT KY$ :  CLS 
3320 SA(BT, ] )  = IX(BT) :  SA (BT,2) = 1Y (BT) :  SA (BT, 3) = 1Z (BT) 
3330 ST0VFL(BT)=ST0VFL(BT)+1 
3340 'FOR J=1 TO 5 :  C(J)=P1 (J)-PU(J) :  NEXT J 
3350 'C(5)=ABS(C(5)) :  GOSUB 5120 
3360 'GOTO 2570 :  '  go to pick-up posit ion 
3370 ' 
3380 '  mover one box from every storage 
3390 '  and place i t  onto the pal let  
3400 '  
3410 PR1=0 
3420 ICUM=0 
3430 FOR N=1 TO TYPE 
3440 IF RANGE (FILEN,N)=0 THEN ICUM=ICUM+1 :  GOTO 38OO 
3450 IF NIQ(N)=0 THEN ICUM=ICUM+1 ;  GOTO 38OO 
3460 BT=N :  GOSUB 4010 
3470 IF NC=1 THEN iCUM=ICUM+l :  GOTO 3800 :  '  no pal let  space avai l .  
3480 SA(N,1)=SA(N,1)-WH(N) 
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3490 IF SA(N,1) >= IX(N) GOTO 3550 
3500 SA(N,1)=LX(N) :  SA (N,2) =SA (N,2)-LH (N) 
35JO IF SA(N,2) >= IY(N) GOTO 3550 
3520 SA(N,2)=LY(N) ;  SA(N,3)=SA(N,3)-HT(N) 
3530 IF SA(N,3) >= IZ(N) GOTO 3550 
3540 SA(N,I)=IX(N) :  SA (N,2) = 1Y (N) :  SA (N,3) = IZ (N) 
3550 X=SA(N,I)  :  Y=SA(N,2) :  Z=HZ :  GOSUB 4890 
3560 PD(1)=T1 :  PD(2)=T2 :  PD (3) =T3 :  PD (4) =T4 :  PD(5)=»ANGLE 
3570 FOR J=1 TO 5 :  C(J)=PD (J)-PU (J) :  NEXT J 
3580 C (5) =ABS (C (5) )  ;  GOSUB 5120 
3590 X=SA(N,I)  :  Y=SA(N,2) :  Z=SA(N,3)+AF :  GOSUB 4890 
3600 PU(1)=T1 :  PU(2)=T2 :  PU (3) =T3 :  PU(4)=T4 ;  PU(5)=ANGLE 
3610 FOR J=1 TO 5 :  C(J)=PU(J)-PD(J) ;  NEXT J 
3620 C(5)=ABS(C(5)) :  GOSUB 5120 
3630 FOR J=1 TO 5 :  T(J)=PU(J) ;  NEXT J 
3640 TX=SA(N,1) :  TY=SA(N,2) ;  TZ=SA(N,3) :  GOSUB 5750 
3650 'PRINT #1,"C+9" 
3660 GOSUB 6380 ;  GOSUB 5910 
3670 FOR J=l TO 5 :  C(J)=PD(J)-PU(J) :  NEXT J 
3680 C(5)=ABS(C(5)) :  GOSUB 5120 
3690 IF ID$="S" THEN 0T=MT4A(SAN,BT) ELSE DT=MT4B (BT) 
3700 GOSUB 7270 
3710 GOSUB 6430 
3720 CTMl (BT)=CTM1 (BT) + (DNEWTM-OLDTMl) 'VN I  Q (BT) 
3730 CTM2(BT) =CTM2(BT) + (DNEWTM-0LDTM2) AN IQ(BT) 
3740 DCTM (BT)=DCTM(BT) + (DNEWTM-OLDTMl) ADN IQ(BT) 
3750 NIQ(BT)=NIQ(BT)-I  :  DM IQ (BT) =DN 1Q (BT) -  1 
3760 IF DNIQ(BT) < 0 THEN DNIQ(BT)=0 
3770 0LDTM1=DNEWTM :  0LDTM2=DNEWTM :  INDXP=0 
3780 IDX$="SA" :  SAN=BT 
3790 GOSUB 4340 :  '  place box onto the pal let  
3800 NEXT N 
3810 IF I  CUM 0 TYPE AND PALLET(PR)/NODE <= PRCTG THEN 

PR1=1 :  GOTO 3420 
3830 GOSUB 6430 ;  OPT=DNEWTM 
3840 FOR J=1 TO 5 :  C (J) =P1 (J)-PU (J) :  NEXT J 
3850 C(5)=ABS(C(5)) :  GOSUB 5120 
3860 IF ID$="S" THEN DT=MT5A(SAN) ELSE DT=MT5B 
3870 GOSUB 7270 :  GOSUB 6430 
3880 0PTS1=0PTS1+DNEWTM-0PT ;  OPTS2=OPTS2+DNEWTM-OPT 
3890 GOTO 2570 :  '  go to pick-up posit ion 
3900 ' 
3910 '  the pal let  
3920 ' 
3930 INDXP=1 :  IDX$="P1" 
3940 FOR J=1 TO 5 :  PD(J)=P1(J) :  NEXT J 
3950 GOSUB 4340 ;  '  place box onto pal let  
3960 GOSUB 6430 
3970 0PTS1=0PTS1+DNEWTM-0PT :  OPTS2=OPTS2+DNEWTM-OPT :  INDXP=0 
3980 GOTO 3380 ;  '  move one box from every storage area 
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3990 END 
4000 '  
4010 '  search the chain for box's placement locat ion 
4020 '  
4030 T(1)=PR :  TE=PR :  NC=0 
4040 IF TNP=1 GOTO 4080 
4050 FOR 1=2 TO TNP 
4060 TE=TE+1 :  IF TE > TNP THEN TE=1 
4070 T(I)=TE :  NEXT I  
4080 FOR K=1 TO TNP :  TE=T(K) :  SEQ=K 
4090 SRCH=START(TE,BT) 
4100 FOR 1=1 TO NODE 
4110 IF START (TE,BT)=0 GOTO 4170 
4120 IF NOPRE (TE,SRCH)=0 THEN GOTO 4200 
4130 SRCH=INDEX(TE,SRCH) 
4140 IF SRCH=0 GOTO 4170 
4150 NEXT I  
4l60 IF PR1=1 GOTO 4l80 
4170 NEXT K 
4l80 NC=1 :  RETURN :  ' no pal let  space avai lable 
4190 '  
4200 '  update the chain 
4210 '  
4220 IF START (TE,BT)=SRCH THEN 

START (TE,BT) = INDEX (TE,SRCH) ;  GOTO 4260 
4240 INDEX (TE,INVR (TE,SRCH))=1NDEX(TE,SRCH) 
4250 I  NVR (TE, INDEX (TE,SRCH) )  =• I  NVR (TE ,  SRCH) 
4260 IF PNT(SRCH)=0 GOTO 4320 
4270 NXT=SRCH ;  FOR 1=1 TO NODE :  NXT=NXT+1 
4280 IF NXT=NOOE+1 THEN NO=ACT ;  GOTO 4310 
4290 IF PNT(NXT) <> 0 THEN NO=PNT (NXT)-1 ;  GOTO 4310 
4300 NEXT I  :  PRINT "ERROR ON PNT" ;  STOP 
4305 FOR K=PNT(SRCH) TO NO 
4310 NOPRE (TE.B(K))=NOPRE (TE,B(K)) -1 
4315 NEXT K 
4320 PLTN=TE :  NC=0 :  RETURN 
4330 ' 
4340 '  place a box onto the pal let  
4350 ' 
4360 IF ANGLA(SEQ-l)  <= I80 GOTO 4380 
4370 SPN$ (1,1)="-" :  RTH=(3éO/ANGL-SEQ+l) 'V2620/TNP :  GOTO 4390 
4380 SPN$ (1,1)="+" :  RTH=2620/TNP'V(SEQ-1) 
4390 GOSUB 5990 :  '  rotate table for desired pal let  
4400 X=PX(SRCH) :  Y=PY (SRCH) ;  Z=HZ ;  GOSUB 4890 
4410 PU{1)=T1 :  PU(2)=T2 :  PU (3) =T3 :  PU (4) =T4 :  PU(5)=ANGLE 
4420 FOR J=1 TO 5 :  C (J)=PU (J)-PD (J) ;  NEXT J 
4430 C(5)=ABS(C(5)) :  GOSUB 5120 
4440 IF PO(SRCH) <> 1 GOTO 4460 
4450 SPN$ (2,2)="+" ;  GOSUB 6l40 
4460 X=PX(SRCH) :  Y=PY (SRCH) ;  Z=PZ(SRCH)+TABLEH+AF ;  GOSUB 4890 
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4470 PD(1)=T1 :  PD(2)=T2 ;  PD(3)=T3 :  PD(4)=T4 :  PD(5)=ANGLE 
4480 FOR J=1 TO 5 :  C (J) =PD (J)-PU (J) :  NEXT J 
4490 C (5)=ABS (C (5)) :  GOSUB 5120 
4500 FOR J=1 TO 5 :  T(J)=PD(J) :  NEXT J 
4510 TX=PX(SRCH) :  TY=PY (SRCH) :  TZ=PZ (SRCH)+TABLEH :  GOSUB 5750 
4520 PRINT #1,"CX" :  GOSUB 638O :  GOSUB 5910 
4530 FOR J=1 TO 5 :  C(J)=PU(J)-PD{J) :  NEXT J 
4540 C (5) =ABS (C (5) )  :  GOSUB 5120 
4550 IF IOX$="SA" THEN DT=«MT6B (SRCH) ELSE DT=MT6A (SRCH) 
4560 GOSUB 7270 
4570 IF SPN$(1,1)="+" THEN SPN$(1.1)="-" ELSE SPN$(1,1)="+" 
4580 GOSUB 5990 :  '  rotate table to or iginal pal let  
4590 PALLET(PLTN)«PALLET(PLTN)-1 :  NCLD1=NCLD1+1 :  NCLD2=NCLD2+1 
4600 IF PO(SRCH) <> 1 GOTO 4620 
4610 SPN$ (2,2)="-" :  GOSUB 6l40 
4620 IF PALLET (PLTN) <> 0 THEN RETURN 
4630 ' 
4640 '  pal let  is ful I  
4650 '  (change pal let  pattern according to 
466o '  in-coming box distr ibut ion) 
4670 '  
4680 FOR J=1 TO 5 :  C (J)=P1 (J)-PU (J) ;  NEXT J 
4690 C(5)=ABS(C(5)) :  GOSUB 5120 
4700 DT=MT5B :  GOSUB 7270 
4710 IF PR=TNP THEN PR=1 ELSE PR=PR+1 
4720 N0=TNP+1 
4730 FOR J=0 TO MAX 
4740 NOPRE(PLTN,J)=NOPRE (NO.J) :  INDEX (PLTN,J) = INOEX(NO,J) 
4750 INVR(PLTN,J)=INVR (NO,J) 
4760 NEXT J 
4770 FOR J=1 TO TYPE :  START (PLTN,J) =START (NO,J) :  NEXT J 
4780 PALLET (PLTN)=NODE 
4790 RTH=655 
4800 SPN$(1,1)="+" :  GOSUB 5990 :  '  rotate the turntable 
4810 'PRINT "REMOVE THE PALLET AND INSERT A NEW PALLET" :  PRINT 
4820 'PRINT "ENTER ANY KEY WHEN READY" :  INPUT SPP$ (1,1) :  CLS 
4830 IF INDXP=0 GOTO 4860 
4840 GOSUB 6430 
4850 OPTS1=OPTS1+DNEWTM-OPT :  0PTS2=0PTS2+DNEWTM-0PT :  INDXP=0 
4860 GOSUB 7340 :  ' use dynamic select ion proc. for a pattern 
4870 RETURN 
4880 '  
4890 '  coordinate transformation 
4900 ' 
4910 RR=SQR(XAX+YAY) 
4920 IF X = 0 THEN TI-SGN(Y)API/2 
4930 IF X > 0 THEN T1=ATN(Y/X) 
4940 IF X < 0 AND Y > 0 THEN T1=PI-ATN (Y/ABS (X)) 
4950 IF X < 0 AND Y < 0 THEN Tl=-(PI-ATN (Y/X)) 
4960 ANGLE=ABS(T1AC) :  IF X=0 THEN T4=0 ELSE T4=ATN(ABS (Y/X)) 
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4970 RO=RR-LLACOS(P) 
4980 Z0=Z-LL>VSIN (P)-H 
4990 IF R0=0 THEN G=SGN (ZO) AP.I/21 ELSE G=ATN (ZO/RO) 
5000 A=ROARO+ZOAZO 
5010 A=4''<Li'<L/A-1 

5020 A=ABS (A) 
5030 A=ATN(SQR(A)) 
5040 T2=A+G 
5050 T3=G-A 
5060 T1=INT(T1ASF) 
5070 T2=INT(T2ASE) 
5080 T3=INT(T3>' 'SD) 
5090 T4=INT(T4ASA) 

5100 RETURN 
5 1 1 0  '  
5120 '  simultaneous movements of joints 
5130 ' 
5140 RETURN :  '  The subrout ine is skipped in this simulat ion 
5150 SIGN$(1)="+" :  SIGN$(2)="+" :  SIGN$(3)="+" :  SIGN$(4)="+" 
5160 IF C(l)  <0 THEN SIGN$(1)="-" 
5170 IF C(2) > 0 THEN SIGN$(2)="-" 
5180 IF C(3) < 0 THEN SIGN$(3)="-" 
5190 IF C(5) <= 90 AND C(l)  < 0 THEN SIGN$(4)="-" 
5200 IF C(5) <= 90 AND C(l)  >0 THEN SIGN$(4)="+" 
5210 IF C(5) > 90 AND C(l)  < 0 THEN SIGN$(4)="+" 
5220 IF C(5) >90 AND C(l)  >0 THEN SIGN$(4)="-" 
5230 ' 
5240 H0(1)=ABS(C(1)) ;  HO (2) =ABS (C (2) )  :  HO (3) =ABS (C (3) )  
5250 FOR J 1 = 1 TO 2 :  L1=J1 :  JJ=J1 + 1 :  FOR J2=JJ TO 3 
5260 IF HO (LI)  < H0(J2) THEN L1=J2 
5270 NEXT J2 
5280 TE=H0(J1) :  H0(J1)=H0(L1) ;  H0(L1)=TE 
5290 TE=IDX(J1) :  IDX(J1) = IDX(L1) :  IDX(L1)=TE 
5300 NEXT J1 
5310 FOR 1=1 TO 3 
5320 M0$(l)=MTR$(IDX(l))  :  S0$ (  I  ) =S I  GN$ (  I  DX ( I  )  )  ;  NEXT I  
5330 NEXT I  
5340 '  
5350 IF H0(1)=0 GOTO 5600 
5360 E1=0 :  C0UNT=0 ;  RATE1=H0 (2)/HO (1) :  RATE2=H0 (3)/HO (1) 
5370 D1=0 :  HS=H0(1) 
5380 PRINT #1 ,M0$ (1) :  A$=l NPUT$ ( i j l )  :  CD=ASC (A$)-32 
5390 IF CD > Z2 GOTO 5380 
5400 IF HS > Z1 GOTO 5430 
5410 TN$=CHR$ (HS+48) :  PRINT #1,M0$ (1);S0$ (1);TN$ 
5420 C0UNT=C0UNT+HS ;  GOTO 5450 
5430 PRINT #\,M0$(1)}S0$(1) ;Z0$ 
5440 COUNT=COUNT+Z1 
5450 HS=HS-Z1 
5460 IF H0(2)=0 GOTO 5560 
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5470 E2=INT(C0UNT>VRATE1) :  TE=E2-E1 
5480 IF TE=0 GOTO 5510 
5490 E1=E2 :  TN$=CHR$ (TE+48) 
5500 PRINT #1,M0$(2);S0$(2);TN$ 
5510 IF H0(3)=0 GOTO 5560 
5520 D2=INT(C0UNTARATE2) :  TE=D2-D1 
5530 IF TE=0 GOTO 5560 
5540 01=02 :  TN$=CHR$ (TE+48) 
5550 PRINT #1,M0$(3);S0$(3);TN$ 
5560 IF HS > 0 GOTO 5380 
5570 ' 
5580 '  rol l  the gr1pper 
5590 ' 
5600 HS=ABS(C(4)) ;  IF HS=0 GOTO 568O 
5610 PRINT #1,"A?" ;  A$=INPUT$ (1,#1) :  CD=ASC (A$)-32 
5620 IF CD > Z2 GOTO 56IO 
5630 IF HS > Z1 GOTO 5650 
5640 TN$=CHR$ (HS+48) ;  • PRI NT / f l  ,MTR$ (4);  S I  GN$ (4) ;TN$ ;  GOTO 568O 
5650 PRINT #1,MTR$(4);SIGN$(4);Z0$ 
5660 HS=HS-Z1 
5670 IF HS > 0 GOTO 5610 
5680 CD=0 
5690 FOR 1 = 1 TO 4 :  PRINT #1,MTR$ ( I ) ;  
5700 TN$=INPUT$(1,#1) :  CD=CD+ASC (TN$)-32 
5710 NEXT I  
5720 IF CD 0  0 GOTO 5680 
5730 RETURN 
5740 '  
5750 '  move straight down 
5760 ' 
5770 JM=AF/NN :  SZ=TZ+AF 
5780 FOR J=1 TO NN 
5790 X=TX :  Y=TY :  Z=SZ-JM>'0 :  GOSUB 4890 
5800 TYPE(1)=T1 :  TYPE(2)=T2 :  TYPE(3)=T3 
5810 TYPE(4)=T4 :  TYPE (5) =ANGLE 
5820 FOR JP=1 TO 5 :  JK(J,JP)=TYPE(JP)-T(JP) :  NEXT JP 
5830 JK(J,5)=ABS(JK(J,5)) 
5840 FOR JP=1 TO 5 :  T (JP) =TYPE (JP) :  NEXT JP 
5850 NEXT J 
5860 FOR J=1 TO NN 
5870 FOR JP=1 TO 5 :  C (JP)=JK (J,JP) ;  NEXT JP ;  GOSUB 5120 
5880 NEXT J 
5890 RETURN 
5900 ' 

5910 '  move straight up 
5920 ' 
5930 FOR J=NN TO 1 STEP -1 
5940 FOR JP=1 TO 4 :  C (JP) =-JK (J, JP) :  NEXT JP 
5950 C(5)=ABS(JK(J,5)) :  GOSUB 5120 
5960 NEXT J 
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5970 RETURN 
5980 ' 

5990 '  rotate the turntable 
6000 '  
6010 DT=MT7 :  GOSUB 7270 
6020 RETURN :  '  this subrout ine is skipped in this simulat ion 
6030 HS=RTH 
6040 PRINT #1,"H?" :  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
6050 IF CD > 85 GOTO 6040 
6060 IF HS >= 10 GOTO 6080 
6070 TN$=CHR$(HS+48) ;  PRINT #1,"H";SPN$(1,1) ;TN$ :  GOTO 6IOO 
6080 PRINT #1,"H":SPN$(1,1);"10" :  HS=HS-10 
6090 IF HS > 0 GOTO 6040 
6100 PRINT #1,"H?" ;  A$=INPUT$(1,#I) :  CD=ASC(A$)-32 
6110 IF CD 0  0 GOTO 6100 
6120 RETURN 
6130 ' 
6l40 '  rol l  the gr ipper for changing box or ientat ion 
6150 ' 

6160 DT=MT8 :  GOSUB 7270 
6170 RETURN :  '  this subrout ine is skipped in this simulat ion 
6180 HS=375 
6190 PRINT #1,"A?" :  A$=INPUT$ (1,#1) :  CD=ASC (A$)-32 
6200 IF CD > 85 GOTO 6190 
6210 IF HS >= 6 GOTO 6230 
6220 TN$=CHR$ (HS+48) :  PRINT #1,"A";SPN$(2,2) ;TN$ :  GOTO 625O 
6230 PRINT #1,"A";SPN$(2,2);"6" :  HS=HS-6 
6240 IF HS > 0 GOTO 619O 
6250 PRINT #1,"A?" :  A$=INPUT$(1,#1) :  CD=ASC (A$)-32 
6260 IF CD 0  0 GOTO 6250 
6270 RETURN 
6280 '  
6290 '  convert number to characters for data f i le name 
6300 '  
6310 IF FILEN < 10 THEN F2$=CHR$ (FILEN+48) :  GOTO 6340 
6320 E1 = INT(FILEN/10) :  R10$=CHR$ (El+48) 
6330 E2=FILEN-E1A10 :  R01$=CHR$ (E2+48) :  F2$=R10$+R01$ 
6340 PATTERN$=F1$+F2$+F3$ 
6350 CPP=CPP+1 :  PRINT#5,"PP ";CPP;" :  ";PATTERN$ 
6360 RETURN 
6370 ' 
6380 '  delay for picking up or placing a box 
6390 ' 
6400 FOR J=1 TO 500 ;  E1=SQR(2) :  NEXT J 
6410 RETURN 
6420 '  
6430 '  obtain current t ime 
6440 '  
6450 SNAP1$=0ATE$ ;  SNAP2$=TIME$ 
6460 DNEWTM=VAL(MlD$(SNAPl$,4,2))A86400I+VAL(LEFT$ (SNAP2$,2))*36001 
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6470 DNEWTM=DNEWTM+VAL(MID$ (SNAP2$, 4,  2) )  >'<60! 
6480 DNEWTM=DNEWTM+VAL(RIGHT${SNAP2$,2))-864001 
6490 RETURN 
6500 ' 

6510 '  generate box types (two distr ibut ions at a t ime) 
6520 '  
6530 FOR J=1 TO QO ;  NBSEQ (1,J)=NBSEQ (2,J) :  NEXT J 
6540 STRT-2 :  IF NDIST=1 THEN STRT=1 
6550 IF NDIST=NPTTN GOTO 67OO 
6560 FOR K=STRT TO 2 :  F ILEN=DSEQ(NDIST+K-1) 
6570 E1=0 

6580 FOR J^l  TO TYPE 
6590 E1=E1+RANGE(FILEN,J) :  PR0B(J)=E1AQ0 
6600 NEXT J 
6610 FOR J=1 TO QO :  NSEQ(J)=J :  NEXT J 
6620 FOR Q1=Q0 TO 1 STEP -1 
6630 E1 = INT(RND'VQ1) + 1 
6640 FOR J=l TO TYPE 
6650 IF NSEQ(E1)<=PR0B(J) THEN BT=J :  GOTO 668O 
6660 NEXT J 
6670 PRINT "ERROR ON BT" ;  STOP 
6680 NBSEQ (K,Q0-Q1 + 1)=BT :  NSEQ (El)  =NSEQ (Ql) 
6690 NEXT Ql :  NEXT K 
6700 RETURN 
6710 ' 
6720 '  del iver stat ist ics of a distr ibut ion run 
6730 ' 
6740 GOSUB 6430 ;  PRTTM=DNEWTM 
6750 FOR J=1 TO 4 :  CTMl (J) =CTM1 (J) + (DNEWTM-OLDTMl) 'VN IQ (J) 
6760 DCTM(J)=DCTM(J) + (DNEWTM-0LDTM1)>VDNIQ(J) :  NEXT J 
6770 PRINT#4,"DIST. NUMBER: " ;NDIST 
6780 PRINT#4,"TOTAL NUMBER OF CARTONS LOADED TO THE PALLET; ";NCLD1 
6790 PRINT#4,"TOTAL SIMULATION TIME (01 ST): ";DNEWTM-STMl 
6800 PRINT#4,"AVERAGE CYCLE TIME (PICK-UP): " ;CCT1/Q0 
6810 PRINT#4,"OPERATION TIME IN STORAGE AREA: DNEWTM-STMl-OPTS 1 
6820 FOR J=1 TO 4 
6830 PRINT#4,"CUMULATIVE TIME AREA: " ;  J,CTMl (J),DCTM(J) 
6840 AVE1=CTM1 (J)/(DNEWTM-STMl) :  AVE2=DCTM (J)/(DNEWTM-STMl) 
6850 PR I  NTA, "AVERAGE CONTENTS: "  ;  J, AVE 1, AVE2 
6860 IF NTTLEl (J)=0 THEN 

PRINTA,"AVERAGE WAITING TIME: " ;J,0,0 :  GOTO 69OO 
6880 AVE1=CTM1 (J)/NTTLE1(J) :  AVE2=DCTM (J)/NTTLE 1(J) 
6890 PRINTS, "AVERAGE WAITING TIME: "  ;  J ,  AVE 1, AVE2 
6900 PRINT#4,"TOTAL CARTONS ENTERED; " ;J,NGES1 (J) 
6910 PR!NT#4,"MAXIMUM CONTENTS: " ;J,NMAX1 (J).DNMAX (J) 
6920 PRINTA,"TOTAL ENTRIES: J,NTTLEl (J) 
6930 PRINTA,"ZERO ENTRIES: "  ;  J, NGES1 (J)-NTTLE 1 (J) 
6940 PRINT#4,"CURRENT CONTENTS: " ;  J,NIQ (J),DNIQ(J) 
6950 PR I  NTA, "PROPORTIONS: " ;J,  RANGE (NDI ST, J) 
6960 NEXT J 
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6970 GOSUB 6430 
6980 IF NO I  ST 0 NPTTN THEN CPRTH=CPRTM+(DNEWTM-PRTTM) 
6990 RETURN 
7000 ' 

7010 '  del iver stat ist ics of total  simulat ion 
7020 ' 

7030 FOR J=1 TO 4 
7040 CTM2(J) =CTM2(J) + (PRTTM-0LDTM2) AN IQ (J)-CPRTM 
7050 NEXT J 
7060 PRINTA,">»SYSTEM SIMULATION STATISTICS" 
7070 PRINT#4,"TOTAL NUMBER OF CARTONS LOADED TO THE PALLET: ";NCLD2 
7080 PRINT#4,"TOTAL SIMULATION TIME (ENTIRE): ";PRTTM-STM2 
7090 PR I  NT#4, "AVERAGE CYCLE TIME (PICK-UP): "  ;  CCT2/(QO'VNPTTN) 
7100 PRINT#4,"OPERATION TIME IN STORAGE AREA: ";PRTTM-STM2-0PTS2 
7110 FOR J=1 TO 4 
7120 PR I  NTA, "CUMULATIVE TIME AREA: " ;J.CTM2(J) 
7130 PRINT#4,"AVERAGE CONTENTS: J,CTM2 (J)/(PRTTM-STM2) '  
7140 IF NTTLE2(J)=0 THEN 

PRINT #4,"AVERAGE WAITING TIME: " ;J,0,0 :  GOTO 7170 
7160 PR I  NTA, "AVERAGE WAITING TIME: "  ;  J ,  CTM2 (J)/NTTLE2 (J) 
7170 PRINT#4,"TOTAL CARTONS ENTERED: " ;J,NGES2(J) 
7180 PRINT#4,"MAXIMUM CONTENTS: " ;J,NMAX2(J) 
7190 PRINTA,"TOTAL ENTRIES: "  ;  J ,NTTLE2 (J) 
7200 PRINT#4,"ZER0 ENTRIES; " ;  J,NGES2 (J)-NTTLE2 (J) 
7210 PRINTA,"NUMBER OF OVERFLOWS: "  ;  J, STOVFL (J) 
7220 PRINT#4,"CURRENT CONTENTS: " ;J,NIQ(J) 
7230 NEXT J 
7240 CLS :  PRINT "READ 0UTPUT.DAT" 
7250 END :  RETURN 
7260 ' 

7270 '  delay for robot movement t ime 
7280 '  
7290 GOSUB 6430 ;  DT=DNEWTM+DT 
7300 GOSUB 6430 :  TE=DNEWTM 
7310 IF TE < DT GOTO 7300 
7320 RETURN 
7330 ' 
7340 '  dynamic select ion for a best matched pal let  pattern 
7350 '  FCT = the look-ahead factor 
7360 '  BRATIO(i)  = box rat io of pal let  pattern i  
7370 ' 
7380 TV0L=0 :  IDK=1 :  FOR J=1 TO TYPE :  QTYPE(J)=0 :  NEXT J 
7390 TNBOX=NBOX 
7400 TNB0X=TNB0X+1 
7410 IF TNBOX > QO AND NDIST=NPTTN GOTO 7460 
7420 IF TNBOX > QO THEN IDK=2 :  TNB0X=1 
7430 QTYPE (NBSEQ (IDK,TNBOX))=QTYPE(NBSEQ(IOK.TNBOX))+ 1 
7440 TVOL=TVOL+BV(NBSEQ (IDK,TNBOX) )  
7450 IF TVOL < FCTAPV GOTO 7400 
7460 TB0X=0 :  FOR J=1 TO TYPE :  TBOX=TBOX+QTYPE (J) :  NEXT J 
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7470 
7480 
7490 
7500 
7510 
7520 
7530 

7550 
7560 
7570 
7580 IF CHECK ( I)  

7600 IF CHECK ( I)=0 AND 

IF TB0X=O THEN TB0X=1 
FOR 1=1 TO NPTTN :  BRATI0(l)=0 
FOR J=1 TO TYPE 
BRATIO(I)=BRATIO(I)+ABS(QTYPE(J)/TBOX-RANGE(I ,J))  :  NEXT J 
FOR J=1 TO TYPE 
IF QTYPE(J) =0 AND NTYPE(I,J) >0 THEN CHECK(I)=2 :  GOTO 7560 
IF (QTYPE(J) >0 AND NTYPE(I,J)=0) OR QTYPE(J) <NTYPE ( I ,J) THEN 

CHECK ( I)=0 :  GOTO 7560 
NEXT J ;  CHECK(I)=1 
NEXT I  :  HINX1=100 :  MINX2=100 :  MINX3=100 
FOR 1=1 TO NPTTN 

1 AND MINXl > BRATIO(I) THEN 
MINX1=BRATI0 ( I)  :  FILEN1 = I  

MINX2 > BRATIO(I) THEN 
MINX2=BRATI0 ( I)  :  FILEN2=I 

GOTO 
GOTO 

7620 IF MINX3 > BRATIO(I) THEN MlNX3=BRATI0(I)  :  FILEN3=I 
7630 NEXT I  
7640 IF MINXl 0  100 THEN FILEN=FILEN1 
7650 IF MINX2 0 100 THEN F ILEN-FILEN2 
7660 FILEN=FILEN3 :  GOTO 768O 
7670 IF (MINX2 < MINXl) AND (MINX2 
7680 GOSUB 6290 :  GOTO 2140 
7690 RETURN 

7670 

7670 

1) THEN FILEN=FILEN2 
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XIV. APPENDIX F. 

DETERMINATION OF PALLET PATTERNS 
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The heuristic dynamic programming model consists of two goals. The 

first is to maximize the utilization of a pallet cube. The second is to 

make the proportions of boxes satisfy some user-specified numbers. Be

cause of the design nature of the heuristic dynamic programming model, 

the procedure tends to maximize the pallet space occupied by boxes, and 

sacrifice the desired box proportions. In the simulation, the box pro

portions of a pallet pattern have been made to be as close as possible 

to the user-specified numbers so that the performance and feasibility 

of a robotic palletizing system can be evaluated. Post-solution adjust

ment is required to obtain the desired box proportions. Table F-1 lists 

the number of boxes used in each pallet pattern. In Table F-1, each 

pallet pattern consists of four data categories A, B, C and D. Category 

A is the input number for each type of box to the heuristic DP program. 

These input numbers are determined based on eq. (3.1). In the event 

that the numbers determined from eq. (3.1) do not generate a rational 

solution, the input number of the box size that has largest volume is 

increased by 1. The input number of the box size which has smallest 

volume is then decreased to an amount such that the total box volumes 

of all sizes do not exceed the pallet's volume. The strategy of round

ing up or increasing the number of larger boxes is that the larger boxes 

can be always replaced by smaller boxes. The feasibility of the solu

tion holds with this substitution. The post-solution adjustment can then 

be carried out to yield desired box proportions. 

Category B gives the solution of the heuristic DP program. Category 
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C corresponds to the required number of boxes of each type after the 

post-solution adjustment is complete. To perform the adjustment, the 

following information is required. 

One 2x3x1 box = three 1x2x1 boxes. 

One 2x3x1 box = six 1x1x1 boxes. 

One 2x2x2 box = four 1x2x1 boxes. 

One 2x2x2 box = eight 1x1x1 boxes. 

One 1x2x1 box = two 1x1x1 boxes. 

The above substitution of boxes can be obtained by using the 

heuristic DP program, and inputing the length and width of the larger 

box as the dimensions of a pallet. 

A dash (-) in Category C indicates that no post-solution adjustment 

is necessary. Here post-solution adjustment only refers to box substi

tution. Box reduction is carried out in Category D. The solution in 

Category C may not satisfy user-specified box proportions. Manual ad

justment is also carried out in Category D, if necessary. The solution 

obtained from either the heuristic DP programming (Category B) or post-

solution adjustment (Category C) guarantees a feasible pallet pattern. 

The numbers of boxes in Categories B and C can be always reduced and 

still maintain a feasible pallet pattern. However, adding number of boxes 

to the solutions in categories B or C may result in an infeasible solu

tion. Under this consideration, the number of boxes must be decreased, 

one by one, until the desired box proportion is obtained. Category D 

in Table F-1 presents the final solutions used for the simulation. 
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Consider the following example. Suppose the heuristic DP program 

generates pallet pattern //lO with the following number of boxes for each 

size. 
Desired Number of Box proportion 

Box size proportion boxes of the solution 

2 x 2 x 2  0 . 3 3  2  0 . 2 5  

2 x 3 x 1  0 . 6 7  6  0 . 7 5  

This DP solution does not yield desired box proportions. The number of 

boxes of size 2x3x1 must be reduced. There are 2 boxes of size 2 x 

2x2. The desired proportion of size 2x3x1 (66.7%) is twice of 

that of size 2x2x2 (33.3%). Therefore, the adequate number of boxes 

of size 2x3x1 should be reduced to 4. This combination gives exact

ly the desired box proportions. The number of boxes in Category D is 

determined in this manner for the remaining pallet patterns. 

For pallet pattern #3, no rational solution is found using the DP 

heuristic program. One of the possible solutions is to have three boxes 

for all sizes 1, 3 and 4. This gives a total occupied pallet space of 

only 45 cubic inches. It is felt that a better solution might exist. 

Since the 1x1x1 box is a unit cube, only two box sizes 2x2x2 and 

2x3x1 need to be considered. By inputing the original number of boxes 

in Category A (four for each box size) and these two box sizes to the 

heuristic DP program, the following new solution is obtained. 

Four boxes of size 2x2x2, and 

f o u r  b o x e s  o f  s i z e  2 x 3 x 1 .  

This combination of boxes occupies 56 cubic inches out of a 64 cubic 

inch pallet. There is 8 cubic inches remaining on the pallet. As many 
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as eight 1x1x1 boxes can be loaded to the pallet. Since the box 

proportion of these three box sizes must be 33.3%, four boxes of size 

1x1x1 are used for pallet pattern 3. 

The symbols W and W/0 shown in the "DP Program" column of Table 

F-1 represent the different dynamic programming procedures used to solve 

for the solution. "W" involves the use of Rule 4 (see Chapter III) to 

consider the desired number of boxes and current allocated number of 

boxes. In contrast, "W/0" skips Rule 4 and intends to maximize the 

pallet space occupied by boxes. In addition, the values under the "Time" 

column give the computer run time in seconds to reach a DP heuristic solu

tion. All these pallet patterns were determined using an IBM AT micro

computer . 
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Table F-1. Number of boxes for a pallet cube® 

Dist. Box type DP Time 

No. Cat. 1 2 3 4 Program (seconds) 

A 0 4 4 4 

1 B 0 4 4 4 W 35 

C --

0 0 4 4 4 

A 0 4 8 0 

2 B 0 8 0 W 27 

C 0 4 7 0 

D 0 4 7 0 

A 4 0 4 4 

3 B 16 0 3 4 W/0 21 

C — --

D 4 0 4 4 

A 0 10 S 0 

4 B 0 8 S 0 W 15 

C 0 12 5 0 

D 0 10 5 0 

A 4 S 8 0 

S B 8 0 7 0 W/0 29 

C 8 8 5 0 

D 5 5 S 0 

A 0 13 0 6 

6 B 0 14 0 6 W/0 27 

C 
D 0 12 0 6 

®A: Solution of eq. 3.43 
B; Solution of the heuristic DP 
C: Post-solution adjustment 
D; Final solution used. 
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Table F-1. continued 

Dist. Box type DP Time 

No. Cat. 1 2 3 4 Program (seconds) 

A 4 0 7 0 

7 B 8 0 7 0 W/0 7 

C — 

D 4 0 7 0 

A 7 7 0 7 

8 B G a 0 7 W/0 48 

C 8 7 0 7 

D 7 7 0 7 

A 0 4 0 9 

9 B 0 8 0 8 W 36 

C 
D 0 4 0 8 

A 0 0 3 6 

10 B 0 0 2 6 W 11 

C — 

D 0 0 2 4 

A 12 26 0 0 

11 B 12 26 0 0 W 25 

C -- --

D 12 25 0 0 

A 0 0 0 10 

12 B 0 0 0 8 W/0 5 

C — -- --

D 0 0 0 8 

A 4 0 0 10 

13 B 16 0 0 8 W/0 11 

C 
D 4 0 0 8 
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Table F-1. continued 

Dist. Box type DP Time 

No. Cat. 1 2 3 4 Program (seconds) 

A 0 0 8 0 

14 B 0 0 8 0 W/G 3 

C — 

D 0 0 S 0 

A 0 32 0 0 
15 8 0 32 0 0 W/0 10 

C -- — 

0 0 32 0 0 

A 0 0 s  3 

18 B 0 0 4 3  W  12 

C — — 

0 0 0 4 2 

A 32 16 0 0 

17 8 32 16 0 0 W/0 23 

C — — 

D 32 16 0 0 

A 64 0 0 0 

18 B 64 0 0 0 W/0 3 

C -- — — 

D 64 0 0 0 

A 16 0 6 0 

19 B 16 0 6 0 W/0 7 

C — — 

D 12 0 0 0 

A 16 0 0 8 

20 B 16 0 0 8 W/0 11 

C — — 

D 16 0 0 S 
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XV. APPENDIX G. PALLET 

PATTERNS AND PRECEDENCE DIAGRAMS 
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Figure G-1. Pallet pattern 1 
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Figure G-2. Pallet pattern 2 
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Figure G-3. Pallet pattern 3 
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Figure G-4. Pallet pattern 4 
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Figure G-5. Pallet pattern 5 
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I  I l  1  
I II < 

Figure G-6. Pallet pattern 6 
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Figure G-7. Pallet pattern 7 
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Figure G-8. Pallet pattern 8 
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Figure G-9. Pallet pattern 9 
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Figure G-10. Pallet pattern 10 
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pattern 12 
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Figure G-13. Pallet pattern 13 
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Figure G-14. Pallet pattern 14 
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Figure G-i-15. Pallet pattern 15 
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1 3 

2 k 

5 6 

Figure G-16. Pallet pattern 16 



www.manaraa.com

308 

• 0 

m 
0 

10 1 1  12 

13 
1 

14 1 16 

19 

20 

21 

22 

23 

24 

0 S 0 0  

27 

33 

28 

34 

31 

35 

32 

36 

37 39 

38 40 

41 43 45 47 

42 44 46 48 

Figure G-17. Pallet pattern 17 
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Figure G-18. Pallet pattern 18 
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Figure G-19. Pallet pattern 19 
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Figure G-20. Pallet pattern 20 
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XVI. APPENDIX H. VARIATION OF 

BOXES STORED IN THE STORAGE AREA 
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Figure H-1. Variations of stored boxes - box size 1x1x1, distribution #3 
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Figure H-2. Variations of stored boxes - box size 1x2x1, distribution #1 
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Figure H—3. Variations of stored boxes - box size 2x2x2, distribution #1 
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XVII. APPENDIX I. 

ROBOT MOVEMENT TIMES 
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The eleven detailed motions are as follows; 

•MOTION 1: move from the hard home position to the location above the 

pick-up position. Let this location be denoted by ABOVE(PU). 

•MOTION 2: move from ABOVE(PU) to the pick-up position. Pick up a 

box and then move up to ABOVE(PU). 

•MOTION 3; move from ABOVE(PU) to the storage area; place the box and 

then raise the arm to the location above the storage area. Since the 

locations of storage areas are different, this motion is a function of 

the box sizes. Let the location above the storage area be denoted by 

ABOVE(SA). 

•MOTION 4a: move from ABOVE(SA) of one box size to the ABOVE(SA) of 

the desired box size. Pick up a stored box and then raise the arm to 

the ABOVE(SA) of the desired box size. This motion is a function of 

the box sizes of which the robot arm moves to and from. 

•MOTION 4b: Let the location above the pallet be denoted by ABOVE(PLT). 

Move the ABOVE(PLT) to ABOVE(SA); lower the arm and pick up a stored 

box. Raise the arm back to ABOVE(SA). This motion is a function of 

the box sizes. 

•MOTION 5a: move from ABOVE(SA) to ABOVE(PU). This is a function of 

the box sizes. 

•MOTION 5b: move from ABOVE(PLT) to ABOVE(PU). 

•MOTION 6a: move from ABOVE(PU) to ABOVE(PLT); lower the arm and place 

a box. Raise the arm back to ABOVE(PLT). This is a function of the box 

placement locations on the pallet. 
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•MOTION 6b: move from ABOVE(SA) to ABOVE(PLT); lower the arm and place 

a box. Raise the arm back to ABOVE(PLT). This is a function of the box 

placement locations on the pallet. 

•MOTION 7: twist the robot hand 90 degrees. 

•MOTION 8: rotate the turntable 90 degrees. 

The relationships of these divided motions are shown as a flow in 

Figure I-l. 

MOTION 5 

MOTION 3 

MOTION 2 

MOTION 1 

MOTION 6l MOTION 4a 

MOTION 6 

MOTION 4b 

MOTION 5b 

Figure I-l. Relationships of robot motions 

With a TI Professional microcomputer, the minimum time unit of the 

built-in timer is one second. The error of collected movement times is 

thus in the range of ±1 second. For each robot motion, the mode, the 

value of the sample that occurs with the greatest frequency, is used as 

the movement time. The following shows the movement times, all in sec
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onds, for the eleven robot motions. 

1) Motion 1: 2 seconds. 

2) Motion 2: 3 seconds. 

3) Motion 5b; 2 seconds. 

4) Motion 7: 3 seconds. 

5) Motion 8; 3 seconds per 90 degrees. 

6) Motions 3, 4b and 5a 

^^\Box size 12 3 4 

Mo t ion^^""^^^^ 

Motion 3 6 6 7 9 

Motion 4b 7 7 8 9 

Motion 5a 2 2 4 5 

7) Motion 4a (see Figure 5.2 for the locations of storage 

areas) 

To Storage area 

From 1 2 3 4 

1 mm • 6 6 7 

S
t
o
r
a
g
e
 

a
r
e
a
 

2 

3 

4 

6 

6 

7 

6 

8 

6 8 

5 

5 

8) Motions 6a and 6b (see the following tables) 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

Movement times of motion 6a 

MOVEMENT TIMES OF MOTION 6A (ACCORDING TO THE ORDER OF NODE NUMBERS) 

5 5 5 5 5 5 4 4 4 3 3 4  

5 4 4 5 5 4 3 3 5 4 4  

5 5 4 5 5 5 4 3 3 4 4 3  

5 5 5 5 5 6 4 4 4 4 4 3 3 4 4  

6 6 4 5 4 . 5  5 5 4 4 4 4 4 5 4  

5 6 5 5 5 6 4 5 5 5 5 5 4 4 4 4 4 3  

5 5 4 5 5 5 4 5 4 3 4  

5 5 5 4 5 5 5 4 5 5 4 4 4 5 4 4 3 3 4 3 4  

6 5 6 5 5 5 4 5 4 4 4 3  

5  4  5  4  5  4  

6 6 5 4 6 5 5 5 4 5 5 5 5 5 4 5 5 4 4 4 5 5 4 3 5 5 4 5 3 4  

4  4  4  4  4  3  3  

5 4 4 4 5 4 4 3  
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Table I-l. continued 

DIST. NUMBER MOVEMENT TIMES OF MOTION 6A (ACCORDING TO THE ORDER OF NODE NUMBERS) 

1 3  5 5 6 5 4 4 5 4 4 4 4 3  

1 4  6 5 5 5 4 3 4 3  

1 5  6 5 5 6 5 6 5 4 5 4 4 4 5 5 5 4 4 5 4 4 4 5 4 3 4 4 3 3 4 4  

5  3  

1 6  5  5  5  4  5  4  

1 7  5 5 5 5 5 5 5 5 6 5 5 4 5 5 6 4 4 5 5 4 5 4 4 4 5 5 4 4 5 4  w  
to 

4 4 5 5 4 4 4 5 3 3 3 4 3 4 3 3 3 3  M  

1 8  6 6 5 5 6 6 6 5 6 5 5 5 5 5 5 4 5 5 5 4 5 4 4 5 5 5 4 4 6 5  

6 6 5 5 4 5 4 4 4 4 4 4 4 3 5 4 3 4 5 4 4 4 4 4 3 3 4 4 3 3  

4  4  3  4  

1 9  5 5 4 5 4 5 5 5 4 4 5 4 4 5 4 4 4 3  

2 0  5 6 5 5 5 5 5 5 5 4 5 4 4 5 5 4 5 4 4 4 3 3 4 3  
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Table 1—2. Movement times of motion 6b 

DIST. NUMBER MOVEMENT TIMES OF MOTION 6B (ACCORDING TO THE ORDER OF NODE NUMBERS) 

1  6 7 5 8  8  5 7 7 8 5 8 5  

2  6 6 7 6 6 6 7 6 6 6 6  

3  7 6 7 5 6 6 8 6 6 6 8 8  

4  7 6 6 6 6 6 6 7 6 6 7 7 6 6 6  

5  6 6 6 6 6 6 6 6 6 7 6 6 7 6 6  

w 
6  8 6 8 6 6 7 8 7 7 6 8 7 7 6 6 7 8 9  K  

7  7 6 7 6 6 6 6 6 7 7 6  

8  8 6 6 8 6 6 8 7 8 8 5 8 6 6 6 8 7 6 7 6 7  

9  8 6 5 8 6 8 6 8 8 8 8 8  

1 0  6  7  7  7  7  7  

1 1  5 6 6 6 6 6 6 6 6 6 6 5 6 6 6 8 8 6 6 6 6 7 6 8 6 6 7 6 6 6  
6  6  4  4  4  3  3  

1 2  7 7 7 8 7 8 8 7  
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Table 1-2. continued 

OIST. NUMBER MOVEMENT TIMES OF MOTION 6B (ACCORDING TO THE ORDER OF NODE NUMBERS) 

1 3  8 8 6 7 6 6 8 8 8 8 8 9  

1 4  6 6 6 7 7 7 7 7  

1 5  6 6 6 6 6 6 7 6 6 6 6 6 7 7 7 7 6 7 5 6 6 6 6 6 7 6 6 7 6 6  

6  7  

1 6  6  7  7  7  8  8  

1 7  7 6 7 6 6 6 7 6 7 7 7 7 6 6 6 6 7 6 6 6 6 6 6 6 6 7 6 6 7 6  w  
N 3  

6 6 7 6 6 7 7 7 7 6 6 7 6 7 6 6 6 6  w  

1 8  6 6 6 6 7 7 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 6 6 7  

5 4 6 6 7 7 7 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 7 7 6 6 6 6  

7  6  6  6  

1 9  6 6 6 6 6 6 6 6 6 6 6 6 7 5 6 6 6 6  

2 0  8 6 6 6 6 7 6 6 8 8 6 6 8 6 6 6 6 8 6 6 8 8 6 6  
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XVIII. APPENDIX J. RANDOM SEQUENCE 

OF 20 BOX SIZE DISTRIBUTIONS 
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Table J-1. Random sequence of box size distributions 

SEQ. 

RUN 8  9  1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  2 0  

7  

S 

9  

10 

1 1  

12 

1 3  

1 4  

1 5  

1 5  7  5  1 9  1 2  4  2 0  1 6  1 3  3  8  1 8  1 1  6  1 4  9  1 7  1 0  1  2  

3  1 5  8  2 0  5  1 0  2  1 4  1 2  9  1 1  1 3  6  1 8  7  1 6  1 7  4  1  1 9  

1 6  1 3  1 1  7  8  5  1 7  3  1  1 2  1 5  1 4  1 0  9  4  2  2 0  1 8  1 9  6  

5  1 0  6  7  4  1 3  9  8  3  1 7  2 0  1  1 8  1 5  1 4  2  1 6  1 9  1 1  1 2  

6  1 0  2 0  1 2  1 1  5  8  1 9  1 6  9  1  1 8  1 3  2  7  3  1 7  4  1 5  1 4  

7  1 0  1 6  6  1 3  1 2  1 9  2 0  1 1  1  3  1 7  5  1 5  1 8  8  4  9  2  1 4  

9  1 7  2  1 6  1 2  5  1 5  3  1 1  1 9  4  8  1 0  1 4  2 0  7  1  1 8  1 3  6  

4  2  1 3  1  1 7  9  3  1 5  1 6  1 4  1 1  2 0  1 9  5  1 8  1 2  6  7  8  1 0  

2  1 3  1 6  1 4  2 0  1 0  8  1 7  1 9  6  1  9  1 8  1 5  4  3  5  7  1 2  1 1  

8  1 4  1 3  1 6  4  1 9  1 2  5  3  1  1 8  2 0  9  6  1 7  1 5  7  1 0  1 1  2  

8  2  7  1 0  1 7  5  2 0  1 6  3  4  1 9  1 2  1 1  1 8  6  9  1 5  1 3  1  1 4  

2  1 0  1  2 0  8  3  1 1  1 3  1 2  1 5  6  5  4  1 8  9  1 9  1 6  1 7  1 4  7  

1  6  1 2  8  1 6  1 7  9  1 5  2  7  1 1  1 0  1 3  1 4  1 9  3  5  4  1 8  2 0  

7  1 5  2 0  2  1 4  5  1 1  1 9  4  1 8  3  8  1  1 6  1 2  6  1 7  1 3  1 0  9  

2  1 6  1 3  4  9  1 8  1 5  1 2  7  5  6  1 7  3  1 1  8  2 0  1 0  1 9  1  1 4  

W 
N3 
Ln 
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Table J-2. continued 

SEQ. 

RUN 8  9  1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  2 0  

16 

1 7  

18 

1 9  

20 

21 

22 

2 3  

2 4  

2 5  

26 

2 7  

28 

2 9  

3 0  

1 5  8  9  1  7  1 7  2 0  5  1 4  1 8  1 9  4  1 1  2  1 0  1 6  1 2  1 3  3  6  

5  1  1 4  1 0  8  2 0  1 5  1 1  1 7  3  1 2  6  1 8  2  1 9  4  1 6  7  9  1 3  

1 5  9  1 4  8  3  1 9  1 1  4  1 7  1 6  5  7  6  1 3  2 0  2  1 0  1  1 8  1 2  

7  1 5  1 9  1 8  2 0  6  1 0  3  1 4  1 6  2  9  1 1  8  1 3  4  1 2  1 7  1  5  

5  1 3  1 1  9  1 6  1 9  3  1 7  2 0  1 2  4  1 0  1 4  2  7  1 5  8  1  1 8  6  

2  7  5  1 4  1 2  1 6  1 7  9  6  1 1  1 5  4  1 0  2 0  3  1  1 8  8  1 9  1 3  

3  7  1  1 8  4  1 2  9  1 5  1 0  1 9  8  2 0  2  1 6  1 4  5  6  1 1  1 7  1 3  

8  1 6  1 7  1 0  1  2  7  1 2  2 0  3  9  1 9  1 3  1 1  4  1 5  6  1 8  1 4  5  

1 3  1 7  1 1  6  3  1  1 5  1 0  1 8  1 4  7  2  8  2 0  4  9  1 2  1 9  1 6  5  

1 4  6  1 6  1 9  2 0  3  1 5  7  1 8  1 0  8  1 1  4  5  1 2  9  2  1 3  1 7  1  

1  1 4  1 0  1 1  2  1 3  4  1 9  6  1 6  1 2  1 7  9  1 8  8  2 0  1 5  3  7  5  

1 1  6  1 2  1 8  8  5  1 7  1 8  1 0  1 3  3  1 5  4  9  2 0  2  1 4  7  1 9  1  

1 2  9  1 0  1 9  3  1 5  5  1 3  4  2 0  1  1 8  1 4  1 1  6  1 7  7  2  8  1 6  

1 1  6  5  1 3  9  4  2  1 0  1 8  7  8  2 0  3  1  1 5  1 6  1 2  1 9  1 4  1 7  

7  1 1  8  5  1 5  1 7  4  1 3  1 0  3  9  2  1 4  1 6  6  2 0  1 9  1  1 8  1 2  

W 
N) 
o\ 
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XIX. APPENDIX K. PALLETIZING 

STATISTICS OF DISTRIBUTION RUNS 
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ThÊ symbols below have been used in the following listings. 

<1> = Total boxes loaded 

<2> = Total palletizing time 

<3> = Average cycle time (seconds) 

<4> = Total operation time in storage (seconds) 

<A> = Average contents 

<B> = Average waiting time (seconds) 

<C> = Total boxes generated 

<D> = Maximum contents 

<E> = Total entries 

<F> = Zero entries 

<G> = Current contents 

The palletizing statistics of a distribution run in the following 

listings were collected independently of the previously distributions. 

All statistics were reset to zero at the beginning of every distribution 

run. 
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Di st. 
number 

Statistics (single-pallet) Di st. 
number 

<1> <2> <3> <4> 

1 199 5774 28.9 3356 

18 200 3398 17.0 3 

4 200 4230 21.1 1359 

13 201 4045 20.2 1055 

2 185 4686 23.4 2693 

3 200 5076 25.4 2693 

15 200 4009 20.0 2 

19 199 4320 21.6 1582 

9 197 5616 28.1 2744 

7 186 4833 24.1 2557 

6 201 5416 27.1 1809 

5 203 5137 25.7 2887 

12 202 3531 17.6 46 

17 200 3767 18.8 335 

16 204 5210 26.0 2850 

11 200 4277 21.4 962 

10 201 5191 26.0 1462 

8 200 5065 25.3 2485 

14 222 3956 19.8 492 

20 200 4104 20.5 1245 
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Di st. 
number 

Statistics (Single-pallet, Storage area 1) Di st. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0 0 200 0 0 200 0 

4 0 0 0 0 0 0 0 

13 1.9 114.3 66 8 31 35 0 

2 0 0 0 0 0 0 0 

3 0.8 61.3 66 10 15 51 0 

15 0 0 0 0 0 0 0 

19 0 0 133 0 0 133 0 

9 0 0 0 0 0 0 0 

7 0.04 2.9 66 1 5 61 0 

6 0 0 0 0 0 0 0 

5 1.9 149.0 66 12 24 42 0 

12 0 0 0 0 0 0 0 

17 0.1 4.0 133 3 4 129 0 

l6 0 0 0 0 0 0 0 

11 0.3 22.9 66 4 9 57 0 

10 0 0 0 0 0 0 0 

8 0.7 57.2 66 7 28 38 0 

14 0 0 0 0 0 0 0 

20 2.6 81.6 133 12 39 94 0 
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Dist. 
number 

Stati sties (Single-pallet, Storage area 2) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0.3 23.8 66 5 11 55 0 

18 0 0 0 0 0 0 0 

4 0.1 3.8 133 3 6 127 0 

13 0 0 0 0 0 0 0 

2 0.04 2.9 66 2 5 6l 0 

3 0 0 0 0 0 0 0 

15 0 0 200 0 0 200 0 

19 0 0 0 0 0 0 0 

9 0 0 66 0 0 66 0 

7 0 0 0 0 0 0 0 

6 0 0 133 0 0 133 0 

5 0.3 21.5 67 4 11 56 0 

12 0 0 0 0 0 0 0 

17 0.2 10.2 67 3 7 60 0 

lé 0 0 0 0 0 0 0 

11 0.8 26.2 134 9 20 114 0 

10 0 0 0 0 0 0 0 

8 1.3 97.0 67 10 36 31 0 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
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01 st. 

number 

Statistics (Single-pallet, Storage area 3) 01 st. 

number 
<A> <B> <0 <0> <E> <F> <G> 

1 2.8 245.6 67 10 47 20 0 

18 0 0 0 0 0 0 0 

4 1.7 105.1 67 6 37 30 0 

13 0 0 0 0 0 0 0 

2 8.0 291.2 134 19 78 56 15 

3 2.4 183.6 67 9 51 16 4 

15 0 0 0 0 0 0 0 

19 6.0 389.2 67 12 48 19 1 1 

9 0 0 0 0 0 0 0 

7 14.4 521 . 1 134 38 84 50 30 

6 0 0 0 0 0 0 0 

5 2.3 178.2 67 13 55 12 4 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 5.9 233.0 133 19 70 63 5 

11 0 0 0 0 0 0 0 

10 3.6 286.2 66 10 45 21 9 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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D ist. 

number 

Statistics (Single-pallet, Storage area 4) D ist. 

number 
<A> <B> <C> <D> <E> <F> <G> 

1 1.4 118.6 67 9 38 29 1 

18 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

13 0.04 1.3 134 2 2 132 0 

2 0 0 0 0 0 0 0 

3 0.1 10.6 67 3 17 50 0 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 12.7 532.5 134 25 80 54 3 

7 0 0 0 0 0 0 0 

6 3.3 264.0 67 7 51 14 2 

5 0 0 0 0 0 0 0 

12 0 0 200 0 0 200 0 

17 0 0 0 0 0 0 0 

16 8.9 6.9 67 2 14 53 0 

11 0 0 0 0 0 0 0 

10 0 0 134 0 0 134 0 

8 0.3 21.8 67 4 10 57 0 

14 0 0 0 0 0 0 0 

20 0.01 0.5 67 1 1 66 0 
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Dist. 

number 

Statistics (double-pallet) Dist. 

number 
<1> <2> <3> <4> 

1 200 5245 26.2 2393 

18 200 3398 17.0 3 

4 200 3608 18.0 289 

13 200 3619 18.1 311 

• 2 191 4361 21.8 1667 

3 202 4568 22.8 1862 

15 200 4010 20.0 2 

19 204 3950 19.7 874 

9 199 5546 27.7 2615 

7 193 4243 21.1 1473 

6 201 4635 23.1 619 

5 203 4943 24.7 2538 

12 200 3481 17.4 0 

17 200 3593 18.0 2 

16 207 4749 23.7 1975 

11 200 3827 19.1 2 

10 200 5320 26.2 1804 

8 200 4546 22.7 1539 

14 200 3480 17.4 0 

20 200 3773 18.9 652 
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Dist. Statistics (Double-pallet, Storage area 1) 

number 
<A> <B> <C> <0> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0 0 200 0 0 200 0 

4 0 0 0 0 0 0 0 

13 0.4 24.5 66 4 10 56 0 

2 0 0 0 0 0 0 0 

3 0.3 18.1 66 6 6 60 0 

15 0 0 0 0 0 0 0 

19 0 0 133 0 0 R133 0 

9 0 0 0 0 0 0 0 

7 0.8 50.4 66 6 15 51 0 

6 0 0 0 0 0 0 0 

5 1 .4 108.5 66 10 22 44 0 

12 0 0 0 0 0 0 0 

17 0 0 133 0 0 133 0 

16 0 0 0 0 0 0 0 

11 0 0 66 0 0 66 0 

10 0 0 0 0 0 0 0 

8 0.3 19-9 66 5 11 55 0 

14 0 0 0 0 0 0 0 

20 1.0 29.4 133 8 21 112 0 
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Dist. 

number 

Statistics (Double-pallet, Storage area 2) Dist. 

number 
<A> <B> <c> <D> <E> <F> <G> 

1 0.05 4.2 66 2 3 63 0 

18 0 0 0 0 0 0 0 

4 0 0 133 0 0 133 0 

13 0 0 0 0 0 0 0 

2 0 0 66 0 0 66 0 

3 0 0 0 0 0 0 0 

15 0 0 200 0 0 200 0 

19 0 0 0 0 0 0 0 

9 0 0 66 0 0 66 0 

7 0 0 0 0 0 0 0 

6 0 0 133 0 0 133 0 

5 0 0 67 0 0 67 0 

12 0 0 0 0 0 0 0 

17 0 0 67 0 0 67 0 

16 0 0 0 0 0 0 0 

11 0 0 134 0 0 134 0 

10 0 0 0 0 0 0 0 

8 1.3 91.3 67 9 30 37 0 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
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Dist. 
number 

Statistics (Double-pallet, Storage area 3) Dist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 2.0 157.0 67 8 40 27 0 

18 0 0 0 0 0 0 0 

4 0.2 13.0 67 3 9 58 0 

13 0 0 0 0 0 0 0 

2 4.1 134.8 134 13 58 76 9 

3 2.9 199.8 67 8 51 16 4 

15 0 0 0 0 0 0 0 

19 0.8 47.8 67 7 23 44 3 

9 0 0 0 0 0 0 0 

7 3.6 115.3 134 18 36 98 10 

6 0 0 0 0 0 0 0 

5 2.5 185.7 67 13 56 n 7 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

lé 6.2 222.8 133 18 56 77 0 

11 0 0 0 0 0 0 0 

10 1 .2 94.7 66 5 25 41 0 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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D  i  St. 
n u m b e r  

S t a t i s t i c s  ( D o u b l e - p a l l e t ,  S t o r a g e  a r e a  h )  D  i  St. 
n u m b e r  

< A >  < B >  <0 < D >  < E >  < F >  < G >  

1 0 .7  55 .1  67  6  25 42 0  

18 0 0 0 0 0 0 0 

k  0 0 0 0 0 0 0 

13 0 0 134 0 0 134 0 

2 0 0 0 0 0 0 0 

3 0 0 67 0 0 67 0 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 11 .0 454.5 134 23 75 59  1 

7 0 0 0 0 0 0 0 

6 0.5  37.9 67 3  17 50 0 

5 0 0 0 0 0 0 0 

12 0 0 200 0 0 200 0 

17 0 0 0 0 0 0 0 

16 0.01 0.3 67 1 1 66 0 

11 0 0 0 0 0 0 0 

10 2.4  96.7 134 14  23 111 0 

8 0.1 6.7 67 3  4  63 0 

14 0 0 0 0 0 0 0 

20 0 0 67 0 0 67 0 
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Dist. 

number 

Statistics (triple-pallet) Dist. 

number 
<1> <2> <3> <4> 

1 200 4700 23.5 1452 

18 200 3398 17.0 0 

h 200 3437 17.1 0 

13 200 3448 17.2 0 

2 197 3822 19.1 674 

3 203 3757 18.8 478 

15 200 4009 20.0 0 

19 200 3427 17.1 0 

9 200 5478 27.4 2498 

7 200 3947 19.7 879 

6 200 4220 21.1 0 

5 200 3890 19.4 836 

12 200 3482 17.4 0 

17 200 3593 18.0 0 

16 199 4224 21.1 1188 

11 200 3825 19.1 0 

10 201 4978 24.9 1201 

8 200 4234 21 .2 933 

14 200 3480 17.4 0 

20 200 3537 17.7 219 
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Dist. 

number 

Statistics (Triple-pallet, Storage area 1) Dist. 

number 
<A> <B> <c> <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0 0 200 0 0 200 0 

4 0 0 0 0 0 0 0 

13 0 0 66 0 0 66 0 

2 0 0 0 0 0 0 0 

3 0.04 2.5 66 2 2 64 0 

15 0 0 0 0 0 0 0 

19 0 0 133 0 0 133 0 

9 0 0 0 0 0 0 0 

7 1.3 80.6 66 8 17 49 0 

6 0 0 0 0 0 0 0 

5 2.7 159.4 66 11 26 40 0 

12 0 0 0 0 0 0 0 

17 0 0 133 0 0 133 0 

l6 0 0 0 0 0 0 0 

11 0 0 66 0 0 66 0 

10 0 0 0 0 0 0 0 

8 0.1 7.5 66 3 5 61 0 

14 0 0 0 0 0 0 0 

20 0.2 5.5 133 4 7 126 0 
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Dist. 

number 

Statistics (Triple-pallet, Storage area 2) Dist. 

number 
<A> <B> <c> <D> <E> <F> <G> 

1 0 0 66 0 0 66 0 

18 0 0 0 0 0 0 0 

k 0 0 133 0 0 133 0 

13 0 0 0 0 0 0 0 

2 0 0 66 0 0 66 0 

3 0 0 0 0 0 0 0 

15 0 0 200 0 0 200 0 

19 0 0 0 0 0 0 0 

9 0 0 66 0 0 66 0 

7 0 0 0 0 0 0 0 

6 0 0 133 0 0 133 0 

5 0.01 0.8 67 1 1 66 0 

12 0 0 0 0 0 0 0 

17 0 0 67 0 0 67 0 

16 0 0 0 0 0 0 0 

11 0 0 134 0 0 134 0 

10 0 0 0 0 0 0 0 

8 1 .2 74.1 67 8 22 45 0 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
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Oist. 

number 

Statistics (Triple-pallet, Storage area 3) Oist. 

number 
<A> <B> <c> <D> <E> <F> <G> 

1 1.2 81.1 67 6 30 37 0 

18 0 0 0 0 0 0 0 

k 0 0 67 0 0 67 0 

13 0 0 0 0 0 0 0 

2 0.8 23.7 134 7 23 111 3 

3 0.3 18.1 67 4 11 56 0 

15 0 0 0 0 0 0 0 

19 0 0 67 0 0 67 0 

9 0 0 0 0 0 0 0 

7 0.7 21.2 134 8 1 1 123 0 

6 0 0 0 0 0 0 0 

5 0 0 67 0 0 67 0 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 1.5 47.3 133 9 19 114 0 

11 0 0 0 0 0 0 0 

10 0.2 12.7 66 3 8 58 0 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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Dist. Statistics (Triple-pallet, Storage area 4) 

number 
<A> <B> <c> <D> <E> <F> <G> 

1 0.2 16.1 67 3 12 55 0 

18 0 0 0 0 0 0 0 

h 0 0 0 0 0 0 0 

13 0 0 134 0 0 134 0 

2 0 0 0 0 0 0 0 

3 0 0 67 0 0 67 0 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 9.2 379.5 134 21 71 63 0 

7 0 0 0 0 0 0 0 

6 0 0 67 0 0 67 0 

5 0 0 0 0 0 0 0 

12 0 0 200 0 0 200 0 

17 0 0 0 0 0 0 0 

lé 0.6 36.4 67 4 16 51 0 

11 0 0 0 0 0 0 0 

10 1.9 72.3 134 12 21 113 0 

8 0 0 67 0 0 67 0 

14 0 0 0 0 0 0 0 

20 0 0 67 0 0 67 0 
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Dist. 
number 

Statistics (quadruple-pallet) Dist. 
number 

< 1 >  <2> A
 

V
 

<4> 

1 200 4216 21.1 631 

18 200 3398 17.0 0 

4 200 3437 17.2 0 

13 200 3448 17.2 0 

2 200 3468 17.3 33 

3 200 3471 17.3 42 

15 200 4009 20.0 0 

19 200 3425 17.1 0 

9 200 5382 26.9 2352 

7 200 3757 18.8 559 

6 200 4220 21.1 0 

5 200 3790 18.9 652 

12 200 3482 17.4 0 

17 200 3593 17.9 0 

lé 199 4091 20.5 964 

11 200 3826 19.1 0 

10 201 4776 23.9 848 

8 200 4108 20.5 659 

14 200 3480 17.4 0 

20 200 3419 17.1 0 
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• i St. 

number 

Stati sties (Quadruple-pallet, Storage area 1) • i St. 

number 
<A> <B> <C> <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0 0 200 0 0 200 0 

h 0 0 0 0 0 0 0 

13 0 0 66 0 0 66 0 

2 0 0 0 0 0 0 0 

3 0 0 66 0 0 66 0 

15 0 0 0 0 0 0 0 

19 0 0 133 0 0 133 0 

9 0 0 0 0 0 0 0 

7 1.4 80.6 66 8 17 49 0 

6 0 0 0 0 0 0 0 

5 1.7 98.9 66 9 21 45 0 

12 0 0 0 0 0 0 0 

17 0 0 133 0 0 133 0 

16 0 0 0 0 0 0 0 

11 0 0 66 0 0 66 0 

10 0 0 0 0 0 0 0 

8 0.02 1 .0 66 1 2 64 0 

14 0 0 0 0 0 0 0 

20 0 0 133 0 0 133 0 
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Dist. 

number 

Stat i sties (Quadruple-pallet, Storage area 2) Dist. 

number 
<A> <B> <C> <D> <E> <F> <G> 

1 0 0 66 0 0 66 0 

18 0 0 0 0 0 0 0 

h 0 0 133 0 0 133 0 

13 0 0 0 0 0 0 0 

2 0 0 66 0 0 66 0 

3 0 0 0 0 0 0 0 

15 0 0 200 0 0 200 0 

19 0 0 0 0 0 0 0 

9 0 0 66 0 0 66 0 

7 0 0 0 0 0 0 0 

6 0 0 133 0 0 133 0 

5 0 0 67 0 0 67 0 

12 0 0 0 0 0 0 0 

17 0 0 67 0 0 67 0 

16 0 0 0 0 0 0 0 

J1 0 0 134 0 0 134 0 

10 0 0 0 0 0 0 0 

8 1 .0 58.8 67 7 17 50 0 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 



www.manaraa.com

347 

01 st. 
number 

Stat i sties (Quadruple-pallet, Storage area 3) 01 st. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0.4 26.0 67 4 12 55 0 

18 0 0 0 0 0 0 0 

k 0 0 67 0 0 67 0 

13 0 0 0 0 0 0 0 

2 0.02 0.4 134 1 1 133 0 

3 0 0 67 0 0 67 0 

15 0 0 0 0 0 0 0 

19 0 0 67 0 0 67 0 

9 0 0 0 0 0 0 0 

7 0.01 0.4 134 1 1 133 0 

6 0 0 0 0 0 0 0 

5 0 0 67 0 0 67 0 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 0.5 14.5 133 5 12 121 0 

11 0 0 0 0 0 0 0 

10 0.01 1.0 66 1 1 65 0 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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01 st. 
number 

Stat isties (Quadruple-pallet, Storage area 4) 01 st. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 0.1 6.7 67 2 6 61 0 

18 0 0 0 0 0 0 0 

k 0 0 0 0 0 0 0 

13 0 0 134 0 0 134 0 

2 0 0 0 0 0 0 0 

3 0.02 0.8 67 1 1 66 0 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 7.7 308.2 134 19 67 67 0 

7 0 0 0 0 0 0 0 

6 0 0 67 0 0 67 0 

5 0 0 0 0 0 0 0 

12 0 0 200 0 0 200 0 

17 0 0 0 0 0 0 0 

16 0.6 36.4 67 4 16 51 1 

11 0 0 0 0 0 0 0 

10 1.1 39.4 134 9 18 116 0 

8 0 0 67 0 0 67 0 

14 0 0 0 0 0 0 0 

20 0 0 67 0 0 67 0 
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Di st. 
number 

Statistics (look-•ahead factor=l) Di st. 
number 

<1> <2> <3> <4> 

1 l6o 4985 24.9 2644 

18 203 3547 17.7 188 

4 215 4758 23.8 2009 

13 210 5404 27.0 2845 

2 198 4236 21.2 1473 

3 200 5357 26.8 2973 

15 199 4032 20.1 74 

19 161 4081 20.4 1788 

9 202 5623 28.1 2719 

7 195 4292 21.5 1540 

6 209 5495 27.5 2746 

5 175 4624 23.1 2628 

12 213 3813 19.1 334 

17 237 5743 28.7 3308 

16 198 4726 23.6 1921 

11 194 4590 22.9 1522 

10 196 5790 28.9 3116 

8 210 6130 30.6 3536 

14 200 3501 17.5 0 

20 167 4365 21.8 2235 
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Dist. 
number 

Stat 1 S t  i cs (Factor = 1, Storage area 1) Dist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0.03 0.58 200 3 4 196 3 

4 0 0 0 0 0 0 0 

13 0.01 0.9 66 1 1 65 0 

2 0 0 0 0 0 0 0 

3 9.6 779.2 66 3 8 58 0 

15 0 0 0 0 0 0 0 

19 19.6 603.0 133 45 82 51 45 

9 0 0 0 0 0 0 0 

7 4.5 292.9 66 15 50 16 15 

6 0 0 0 0 0 0 0 

5 4.5 316.6 66 19 55 11 19 

12 0 0 0 0 0 0 0 

17 5.3 230.7 133 14 75 58 10 

l6 0 0 0 0 0 0 0 

11 8.3 580 66 19 49 17 19 

10 0 0 0 0 0 0 0 

8 1.6 145.4 66 8 47 19 7 

14 0 0 0 0 0 0 0 

20 24.0 788.6 133 46 93 40 41 
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Oist. 
number 

Stat i sti cs (Factor = 1, Storage area 2) Oist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 

r— o
 55.9 66 7 22 44 2 

18 0 0 0 0 0 0 0 

4 0.03 1.2 133 2 5 128 1 

13 0 0 0 0 0 0 0 

2 0.8 50.8 66 4 31 35 3 

3 0 0 0 0 0 0 0 

15 0.02 0.3 200 3 3 197 3 

19 0 0 0 0 0 0 0 

9 0.04 3.5 66 2 3 63 0 

7 0 0 0 0 0 0 0 

6 8.2 340.0 133 20 73 60 2 

5 3.5 244.2 67 18 48 19 17 

12 0 0 0 0 0 0 0 

17 0.04 3.1 67 2 7 60 0 

16 0 0 0 0 0 0 0 

11 0.02 0.9 134 4 4 130 4 

10 0 0 0 0 0 0 0 

8 0 0 67 0 0 67 0 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
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D ist. 
number 

Statisti es (Factor = 1, Storage area 3) D ist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 4.2 310.9 67 22 39 28 21 

18 0 0 0 0 0 0 0 

4 2.7 189.6 67 10 48 19 2 

13 0 0 0 0 0 0 0 

2 0.5 17.2 134 6 18 116 0 

3 0.5 39.9 67 5 23 44 2 

15 0 0 0 0 0 0 0 

19 0 0 67 0 0 67 0 

9 0 0 0 0 0 0 0 

7 0.01 0.3 134 2 2 132 2 

6 0 0 0 0 0 0 0 

5 0 0 67 0 0 67 0 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 0.5 19.1 130 4 18 112 2 

11 0 0 0 0 0 0 0 

10 0.02 2.0 66 1 2 64 0 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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Dist. 
number 

Stati St ics ' (Factor = 1, Storage area 4) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 2.1 155.2 67 17 42 25 17 

18 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

13 6.0 244.6 134 16 74 60 9 

2 0 0 0 0 0 0 0 

3 2.1 165.5 67 8 55 12 8 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 3.7 155.1 134 14 73 61 7 

7 0 0 0 0 0 0 0 

6 0.02 0.2 67 1 1 66 1 

5 0 0 0 0 0 0 0 

12 0.01 0.09 200 1 1 199 1 

17 0 0 0 0 0 0 0 

16 0.4 30.0 70 2 36 34 0 

11 0 0 0 0 0 0 0 

10 3.2 139.4 134 9 77 57 7 

8 1.6 144.3 67 9 53 14 4 

14 0 0 0 0 0 0 0 

20 0 0 67 0 0 67 0 
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Dist. 
number 

Statistics (look-ahead factor=l.5) Dist. 
number 

<1> <2> <3> <4> 

1 188 5710 28.5 3547 

18 198 3483 17.4 150 

4 211 4628 23.1 1904 

13 192 4519 22.6 1742 

2 204 4650 23.2 1955 

3 185 4830 24.1 2413 

15 205 4151 20.7 194 

19 200 4881 24.4 2592 

9 197 4530 22.6 1414 

7 202 4424 22.1 1678 

6 203 5132 25.6 1495 

5 185 4800 24.0 2796 

12 213 3813 19.1 334 

17 198 4056 20.3 911 

16 202 5206 26.0 2686 

11 192 4573 22.9 1521 

10 204 5565 27.8 2259 

8 201 5277 26.4 2476 

14 198 3561 17.8 147 

20 203 4870 24.3 2572 
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Dist. 
number 

Stat 1 sties (Factor = 1.5» Storage area 1) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0.08 1.5 200 6 6 194 6 

4 0 0 0 0 0 0 0 

13 0.2 5.1 66 4 11 55 4 

2 0 0 0 0 0 0 0 

3 1 .0 25.3 66 10 33 33 10 

15 0 0 0 0 0 0 0 

19 6.4 157.4 133 16 79 54 14 

9 0 0 0 0 0 0 0 

7 4.0 266.1 66 15 50 16 15 

6 0 0 0 0 0 0 0 

5 3.3 242.2 66 14 55 11 7 

12 0 0 0 0 0 0 0 

17 0.5 15.1 133 13 18 115 13 

16 0 0 0 0 0 0 0 

11 6.4 446.7 66 19 48 18 19 

10 0 0 0 0 0 0 0 

8 2.2 175.4 66 9 52 14 9 

14 0 0 0 0 0 0 0 

20 8.2 300.5 133 19 81 52 12 
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Dist. 
number 

Stat!sties (Factor = 1.5, Storage area 2) Dist. 
number 

<A> <B> <C> <0> <E> <F> <G> 

1 4.0 349.4 66 15 53 13 1 

18 0 0 0 0 0 0 0 

h 1 .0 34.4 133 10 32 101 2 

13 0 0 0 0 0 0 0 

2 0^ 3.4 66 2 9 57 0 

0 0 0 0 0 0 0 

15 0.02 0.3 200 3 3 197 3 

19 0 0 0 0 0 0 0 

9 1.1 26.0 66 7 30 36 3 

7 0 0 0 0 0 0 0 

6 0.3 12.8 133 4 13 120 0 

5 2.6 184.3 67 13 46 21 12 

12 0 0 0 0 0 0 0 

17 0.2 13.2 67 5 12 55 5 

16 0 0 0 0 0 0 0 

11 0.05 1.9 134 6 6 128 6 

10 0 0 0 0 0 0 0 

8 0.02 1.5 67 1 4 63 0 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
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D i St. 
number 

Statist!es (Factor =1.5. Storage area 3) D i St. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0.06 5.2 67 4 5 62 4 

18 0 0 0 0 0 0 0 

k 0.7 16.5 67 5 22 45 1 

13 0 0 0 0 0 0 0 

2 1.9 44.2 134 7 49 85 0 

3 0. 1 10.3 67 4 9 58 3 

15 0 0 0 0 0 0 0 

19 0.02 1.6 67 3 3 64 3 

9 0 0 0 0 0 0 0 

7 0.08 0.3 134 2 2 132 2 

6 0 0 0 0 0 0 0 

5 0.02 0.15 67 1 1 66 1 

12 0 0 0 0 0 G 0 

17 0 0 0 0 0 G 0 

16 0.09 3.6 130 3 11 119 3 

11 0 0 0 0 0 G 0 

10 0.8 66.4 66 4 24 42 4 

8 0 0 0 0 0 G 0 

14 0.08 1.5 200 6 6 194 6 

20 0 0 0 0 0 G 0 



www.manaraa.com

358 

Dist. 
number 

Stati sties (Factor = 1.5, Storage area 4) Dist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 2.4 206.3 67 13 51 16 7 

18 0 0 0 0 0 0 0 

h 0 0 0 0 0 0 0 

i3 2.8 63.6 134 •9 45 89 5 

2 0 0 0 0 0 0 0 

3 1.5 35.4 67 9 39 28 9 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 0.3 9.5 134 5 13 121 3 

7 0 0 0 0 0 0 0 

6 1.8 139.7 67 7 28 39 1 

5 0 0 0 0 0 0 0 

12 0.05 0.1 200 1 1 199 1 

17 0 0 0 0 0 0 0 

16 1.8 135.9 70 5 60 10 1 

11 0 0 0 0 0 0 0 

10 2.1 87.8 134 14 32 102 0 

8 0.4 28.5 67 4 20 47 0 

14 0 0 0 0 0 0 0 

20 0 0 67 0 0 67 0 
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01 st. Statistics (look--ahead factor=2) 

number 
<1> <2> <3> <4> 

1 175 5565 27.8 3557 

18 206 3603 18.0 248 

k 189 4799 24.0 2708 

13 190 5037 25.2 2528 

2 216 4764 23.8 2173 

3 208 5697 28.5 3469 

15 173 3925 19.6 516 

19 196 4694 23.5 2306 

9 185 4566 22.8 1900 

7 214 4738 23.7 2027 

6 207 r58l8 29.1 3376 

5 189 4990 24.9 3067 

12 228 4185 20.9 742 

17 196 4541 22.7 2013 

16 201 5206 26.0 2792 

11 202 4742 23.7 1843 

10 203 6288 31.4 3682 

8 177 5375 26.9 3175 

14 216 3849 16.1 357 

20 201 4790 23.9 2054 
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Dist. 
number 

Stati sties (Factor = 2, Storage area 1) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 0.03 0.5 200 3 4 196 3 

4 0 0 0 0 0 0 0 

13 0.01 0.6 66 2 2 64 2 

2 0 0 0 0 0 0 0 

3 0.9 80.2 66 8 30 36 8 

15 0 0 0 0 0 0 0 

19 4.8 170.4 133 16 72 61 16 

9 0 0 0 0 0 0 0 

7 3.6 256.6 66 14 51 15 14 

6 0 0 0 0 0 0 0 

5 3.2 242.3 66 14 55 11 7 

12 0 0 0 0 0 0 0 

17 0.05 1.6 133 5 5 128 5 

16 0 0 0 0 0 0 0 

11 0.06 4.5 66 3 5 61 3 

10 0 0 0 0 0 0 0 

8 0.09 7.0 66 8 8 58 8 

14 0 0 0 0 0 0 0 

20 0 0 133 0 0 133 0 
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D i S t .  
number 

Stati sties (Factor = 2, Storage area 2) D i S t .  
number 

<A> <B> <0 <D> <E> <F> <G> 

1 4.6 388.4 66 15 59 7 10 

18 0 0 0 0 0 0 0 

4 9.8 354.0 133 22 89 44 20 

13 0 0 0 0 0 0 0 

2 2.5 183.6 66 9 47 19 4 

3 0 0 0 0 0 0 0 

15 2.0 40.3 200 35 35 165 35 

19 0 0 0 0 0 0 0 

9 4.0 275.1 66 12 53 13 12 

7 0 0 0 0 0 0 0 

6 8.8 385.0 133 22 81 52 21 

5 3.5 263.9 67 16 52 15 15 

12 0 0 0 0 0 0 0 

17 2.8 189.8 67 11 60 7 11 

16 0 0 0 0 0 0 0 

11 5.0 178.9 134 21 51 83 12 

10 0 0 0 0 0 0 0 

8 3.1 252.5 67 15 47 20 15 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 



www.manaraa.com

362 

Dist. 
number 

Stati sties (Factor = 2, Storage area 3) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0.03 2.5 67 4 5 62 4 

18 0 0 0 0 0 0 0 

if 0.05 3.3 67 3 8 59 3 

13 0 0 0 0 0 0 0 

2 0.05 1.8 134 1 11 123 0 

3 0.08 7.1 67 3 8 59 3 

15 0 0 0 0 0 0 0 

19 0.02 1 .2 67 3 3 64 3 

9 0 0 0 0 0 0 0 

7 0.02 0.9 134 3 3 131 3 

6 0 0 0 0 0 0 0 

5 0.00 0.1 67 1 1 66 I 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 0.06 2.5 130 5 5 125 5 

11 0 0 0 0 0 0 0 

10 0.05 5.0 66 2 5 61 2 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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D i St. 
number 

Statistics (Factor = 2, Storage area 4) D i St. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 3.0 248.6 67 15 54 13 1 I 

18 0 0 0 0 0 0 0 

h 0 0 0 0 0 0 0 

13 11.6 435.3 134 21 77 57 15 

2 0 0 0 0 0 0 0 

3 2.9 246.8 67 12 56 11 1 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 0.2 7.9 134 11 12 122 11 

7 0 0 0 0 0 0 0 

6 0.08 6.7 67 5 11 56 5 

5 0 0 0 0 0 0 0 

12 0.02 0.4 200 2 3 197 2 

17 0 0 0 0 0 0 0 

16 3.4 252.3 70 11 70 0 1 1 

11 0 0 0 0 0 0 0 

10 6.6 312.1 134 22 80 54 8 

8 3.0 245.2 67 19 52 15 19 

14 0 0 0 0 0 0 0 

20 3.9 277.4 67 9 58 9 5 
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D ! st. 
number 

Statistics (look-•ahead factor=2.5) D ! st. 
number 

<1> <2> <3> <4> 

1 180 5568 27.8 3426 

18 148 3497 17.5 1016 

4 203 4585 22.9 1836 

13 202 4498 22.5 1795 

2 193 4726 23.6 2273 

3 206 5485 27.4 3405 

15 199 4343 21.7 842 

19 194 4833 24.2 2598 

9 189 4609 23.0 1867 

7 230 5046 25.2 2315 

6 188 5021 25.1 2000 

5 197 5142 25.7 3176 

12 232 4284 21.4 841 

17 196 5100 25.5 2713 

16 191 5028 25.1 2640 

11 206 4890 24.4 1801 

10 196 5808 29.0 2946 

8 195 5911 29.5 3438 

14 224 4021 20.1 535 

20 203 4870 24.3 2572 
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D i st. 
number 

Stat i Sti es (Factor = 2.5, Storage area 1) D i st. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0 0 0 0 0 0 0 

18 8.5 149.0 200 65 66 134 0 

4 0 0 0 0 0 0 0 

13 2.8 190.8 66 11 48 18 10 

2 0 0 0 0 0 0 0 

3 1.6 133.6 66 12 45 21 12 

15 G 0 0 0 0 0 0 

19 8.0 289.2 133 20 o
o
 

50 20 

9 0 0 0 0 0 0 0 

7 3.4 259.2 66 15 50 16 15 

6 0 0 0 0 0 -0 0 • 

5 2.9 228.3 66 13 52 14 9 

12 0 0 0 0 0 0 0 

17 6.9 266.4 133 24 84 49 24 

16 0 0 0 0 0 0 0 

11 7.5 556.4 66 21 50 16 21 

10 0 0 0 0 0 0 0 

8 1.2 106.6 66 10 47 19 10 

14 0 0 0 0 0 0 0 

20 8.2 300.5 133 19 81 52 12 



www.manaraa.com

366 

Dist. 
number 

Statî sties (Factor = 2.5, Storage area 2) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 3.8 321.9 66 15 57 9 6 

18 0 0 0 0 0 0 0 

4 0.4 13.2 133 7 14 119 4 

13 0 0 0 0 0 0 0 

2 0.08 5.9 66 2 8 58 2 

3 0 0 0 0 0 0 0 

15 1 .0 21.2 200 25 28 172 25 

19 0 0 0 0 0 0 0 

9 3.4 238.1 66 14 52 14 14 

7 0 0 0 0 0 0 0 

6 3.6 135.3 133 15 49 84 15 

5 2.8 215.1 67 15 53 14 15 

12 0 0 0 0 0 0 0 

17 0.06 4.5 67 6 6 61 6 

16 0 0 0 0 0 0 0 

11 0.01 0.3 134 2 2 132 2 

10 0 0 0 0 0 0 0 

8 0.01 0.5 67 2 2 65 2 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 



www.manaraa.com

367 

Dist. 
number 

Stati sties (Factor = 2.5. Storage area 3) Dist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 0.09 7.7 67 7 7 60 7 

18 0 0 0 0 0 0 0 

4 2.1 146.3 67 11 42 25 7 

13 0 0 0 0 0 0 0 

2 5.2 183.0 134 15 68 66 13 

3 1.0 80.1 67 12 52 15 12 

15 0 0 0 0 0 0 0 

19 0.02 1.2 67 3 3 64 3 

9 0 0 0 0 0 0 0 

7 0.01 0.4 134 2 2 132 2 

6 0 0 0 0 0 0 0 

5 0.00 0.1 67 1 1 66 1 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 0.08 3.3 130 7 7 123 7 

11 0 0 0 0 0 0 0 

10 0.1 10.7 66 4 7 59 h 

8 0 0 0 0 0 0 0 

14 0 0 200 0 0 200 0 

20 0 0 0 0 0 0 0 
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Di st. 
number 

Stati sties (Factor = 2.5, Storage area 4) Di st. 
number 

<A> <B> <C> <D> <E> <F> <G> 

I 2.2 186.8 67 13 47 20 7 

18 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

13 0. 1 3.4 134 7 8 126 7 

2 0 0 0 0 0 0 0 

3 0.04 2.9 67 4 6 61 4 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 0. 1 5.2 134 9 9 125 9 

7 0 0 0 0 0 0 0 

6 0.3 20.6 67 7 17 50 7 

5 0 0 0 0 0 0 0 

12 0.02 0.4 200 2 3 197 2 

17 0 0 0 0 0 0 0 

16 3.4 243.5 70 13 70 0 13 

11 0 0 0 0 0 0 0 

10 5.4 235.2 134 20 65 69 8 

8 1.8 158.9 67 8 58 9 8 

14 0 0 0 0 0 0 0 

20 0 0 67 0 0 67 0 
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Di st. Statistics (look-•ahead factor=3) 

number 
<1> <2> <3> <4> 

1 174 5483 27.4 3401 

18 156 3620 18.1 11 12 

4 196 4591 22.9 2135 

13 184 4263 21.3 1648 

2 224 4926 24.6 2376 

3 178 5350 26.7 3399 

15 149 3831 19.1 944 

19 194 4985 24.9 2778 

9 184 4653 23.3 2020 

7 230 5097 25.5 2372 

6 193 5401 27.0 2942 

5 188 5019 25.1 3106 

12 243 4555 22.8 1148 

17 251 5781 28.9 3357 

16 211 5291 26.4 2751 

11 205 4978 24.9 2198 

10 215 5548 27.7 2006 

8 203 r5543 27.7 3232 

14 203 3749 18.7 367 

20 201 4392 22.0 1474 



www.manaraa.com

370 

Oist. 
number 

Statistics (Factor => 3. Storage area 1) Oist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 0 0 0 0 0 0 02 

18 7.5 135.8 200 62 64 136 62 

h 0 0 0 0 0 0 0 

13 2.8 184.6 66 16 50 16 16 

2 0 0 0 0 0 0 0 

3 2.7 219.6 66 17 53 13 17 

15 0 0 0 0 0 0 0 

19 8.2 305.8 133 24 84 49 24 

9 0 0 0 0 0 0 0 

7 3.3 256.7 66 16 50 16 16 

6 0 0 0 0 0 0 0 

5 2.9 221 .3 66 13 52 14 10 

12 0 0 0 0 0 0 0 

17 0.3 12.0 133 15 15 118 15 

16 0 0 0 0 0 0 0 

11 0.3 24.2 66 9 15 51 9 

10 0 0 0 0 0 0 0 

8 0.3 24.4 66 5 15 51 5 

14 0 0 0 0 0 0 0 

20 0.07 2.3 133 2 5 128 0 
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Dist. 
number 

Stati sties (Factor = 3, Storage area 2) Dist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 3.9 324.6 66 15 58 8 10 

18 0 0 0 0 0 0 0 

4 2.4 84.2 133 12 60 73 1 1 

13 0 0 0 0 0 0 0 

2 1.5 110.8 66 7 45 21 5 

3 0 0 0 0 0 0 0 

15 7.0 134.0 200 64 65 135 64 

19 0 0 0 0 0 0 0 

9 3.4 236.6 66 15 53 13 15 

7 0 0 0 0 0 0 0 

6 9.2 375.3 133 26 83 50 26 

5 3.0 224.2 67 20 54 13 20 

12 0 0 0 0 0 0 0 

17 1.9 166.2 67 17 57 10 17 

16 0 0 0 0 0 0 0 

11 1.8 69.2 134 21 50 84 21 

10 0 0 0 0 0 0 0 

8 1.7 139.6 67 8 48 19 4 

14 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
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Dist. 
number 

Stat isties (Factor = 3, Storage area 3) Dist. 
number 

<A> <B> <C> <D> <E> <F> <G> 

1 0.1 8.7 67 a 8 59 8 

18 0 0 0 0 0 0 0 

k 0.3 19.4 67 4 12 55 1 

13 0 0 0 0 0 0 0 

2 0.1 3.8 134 4 15 119 0 

3 0.06 4.5 67 6 6 61 6 

15 0 0 0 0 0 0 0 

19 0.06 4.2 67 5 5 62 5 

9 0 0 0 0 0 0 0 

7 0.02 0.9 134 3 3 131 3 

6 0 0 0 0 0 0 0 

5 0.02 1.9 67 4 4 63 4 

12 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

16 0.1 4.4 130 7 7 123 7 

11 0 0 0 0 0 0 0 

10 4.0 333.5 66 15 50 16 15 

8 0 0 0 0 0 0 0 

14 0.2 3.4 200 9 9 191 9 

20 0 0 0 0 0 0 0 
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D ist. 
number 

Stati sti cs (Factor = 3, Storage area 4) D ist. 
number 

<A> <B> <0 <D> <E> <F> <G> 

1 2.3 189.0 67 13 48 19 8 

18 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

13 0.3 10.9 134 13 13 121 13 

2 0 0 0 0 0 0 0 

3 2.8 229.3 67 15 56 11 15 

15 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

9 0.4 14.4 134 15 16 118 15 

7 0 0 0 0 0 0 0 

6 0.07 5.4 67 7 7 60 7 

5 0 0 0 0 0 0 0 

12 0.03 0.8 200 3 5 195 3 

17 0 0 0 0 0 0 0 

16 1.8 140.0 70 6 61 9 6 

11 0 0 0 0 0 0 0 

10 0.01 0.2 134 1 1 133 0 

8 0.6 53.8 67 8 30 37 8 

14 0 0 0 0 0 0 0 

20 1.8 116.8 67 6 37 30 0 
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